US Long-Term Ecological Research Network

Wisconsin Lake Historical Limnological Parameters 1925 - 2009

Abstract
This dataset is a compilation of ten sources of data representing physical and chemical properties of 13,093 Wisconsin lakes. The goal was to compile a comprehensive resource of historical and more recent lake information which would be accessible by querying a single database. Due to the wide temporal extent (1925-2009), methods used for measuring lake parameters in this dataset have varied. A careful look at the available metadata and background information is recommended.Sampling Frequency: variesNumber of sites: 13,093
Contact
Dataset ID
263
Date Range
-
Maintenance
complete
Metadata Provider
Methods
1. Dataset: sr1 - Surface Water Resource Inventory (SWRI) Wisconsin. Temporal coverage: 1960-1980. Original description found in the preface of each Wisconsin Department of Natural Resources (WDNR) SWRI report, published by county.Data manipulation for incorporation into database: Original source of data is WDNR SWRI printed reports. An electronic version (MS Excel spreadsheet) of the data was available (the origin of this spreadsheet was unknown) and was used in preparation of this database. Some discrepancies observed between printed version and electronic version of the dataset: 1) in the printed reports, alkalinity is expressed either as methyl orange or methyl purple; varies from county to county. The electronic format does not contain any metadata or explanation regarding alkalinity. 2) in the printed reports, sometimes max depth provided, sometimes known depth, and sometimes Secchi depth- these values seem to have been transcribed as Secchi depth in the electronic dataset. 3) values of area, conductivity, alkalinity, and depth in electronic format have been rounded up from values in the books. 4) a field in the spreadsheet named "Cl" has no match in books and was not included in the final dataset. 5) color code was not defined in electronic format. It was deciphered and checked against a few lakes from different counties in the printed reports. Final color codes: 1 - Light brown. 2 - Medium brown. 3 - Dark brown. 4 - Clear. 5 - TurbidIssues specific to the electronic format: 13822 records originally. After eliminating all records without WBICs (Water Body Identification Code) or with duplicate WBICs, the dataset reduced to 12638 records with unique WBICs. Of these, 151 records (with area >10 acres) had no or zero data for some chemical parameters. Checked these records using WDNR SWRI reports. Eliminated any record that couldn't be resolved using the books and WDNR WBICs file.. Most records contain both alkalinity and conductivity data, although some do not contain both parameters. Final dataset sr1 has 12383 records2. Dataset: sr2 - Pieter Johnson. Temporal coverage: not specified. Original description: Combination of WDNR Register of Waterbodies (ROW) file, Wisconsin Lakes Book (wilk), and SWRI. Selected lakes with areas >= 10 acres, and lakes in at least 2 of the 3 datasets. Lakes with missing WBIC were not included. Lakes with missing surface area were not included.Data manipulation for incorporation into database: Received original dataset from Jake Vander Zanden (UW-Madison, Center Data manipulation for incorporation into database: Received original dataset from Jake Vander Zanden (UW-Madison, Center for Limnology). The dataset was used in the following publication: Johnson, P.T., J.D. Olden, M.J. Vander Zanden. 2008. Dam invaders: impoundments facilitate biological invasions in freshwaters. Frontiers in Ecology and the Environment 6:357-363. Original dataset contained 5213 records; . Eliminated 8 records without WBIC, legal (TRS) description, and no values for lake characteristics. Note: Many records are repeated from sr1 dataset. Final dataset sr2 has 5205 records.3. Dataset: sr3 - Biocomplexity Project. Temporal coverage: 2001-2004. Original description: Data Set Title: Biocomplexity; Coordinated Field Studies: Chemical Limnology. Investigators: Steve R. Carpenter, Jim Kitchell, Timothy K. Kratz, John J. Magnuson. Contact:NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; 62 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year)Data manipulation for incorporation into database: Original dataset had 62 records. Replicate samples per lake averaged to single measurements. Two records represented a single lake (Little Rock, North and South basins); these were merged into one record. Final dataset sr3 has 61 records.4. Dataset: sr4 - Landscape Position Project. Temporal coverage: 1998. Original description: Data Set Title: Landscape Position Project: Chemical Limnology. Investigators: Ben Greenfield, Thomas Hrabik, Timothy K. Kratz, David Lewis, Amina Pollard, Karen Wilson. Contact: NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-890-3446;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Parameters characterizing the chemical limnology and spatial attributes of 51 lakes were surveyed as part of the Landscape Position Project.Data manipulation for incorporation into database: WBICs added. Ward Lake removed from data. Parameters values over multiple sampling events were averaged. Info regarding depth at which samples were taken was not retained. Final dataset sr4 has 50 records.5. Dataset: sr5 - Lillie and Mason. Temporal coverage: 1979. Original description: printed report WI DNR Technical Bulletin no.138. 1983. Limnological characteristics of Wisconsin LakesData manipulation for incorporation into database: Original file containing 667 records received from Paul Garrison (WDNR). 88 records lacked WBICs but 65 of these were assigned using WDNR lakes shapefile, matching names and areas of lakes. Final 23 records without WBICs were removed. Note: Since lake / impoundment classification doesn't seem to match Johnson's dataset (sr2), it was not included. Note from Richard Lathrop (WDNR): total P measurements are probably unreliable due to method used not being sensitive enough. Final dataset sr5 has 644 records.6.Dataset: sr6 - EPA- Eastern Lakes Survey (1984): Temporal coverage: 1984. Original description: Data Set Title: National Surface Water Survey: Eastern Lake Survey-Phase I. The Eastern Lake Survey-Phase I (ELS-I), conducted in the fall of 1984, was the first part of a long-term effort by the U.S. Environmental Protection Agency known as the National Surface Water Survey. It was designed to synoptically quantify the acid-base status of surface waters in the United States in areas expected to exhibit low buffering capacity. The effort was in support of the National Acid Precipitation Assessment Program (NAPAP). The survey involved a three-month field effort in which 1612 probability sample lakes and 186 special interest lakes in the northeast, southeast, and upper Midwest regions of the United States were sampled.Data manipulation for incorporation into database: Original dataset, downloaded from EPA website, has over 100 parameters. Only a small subset of interest was retained. Original documentation for full dataset available is available. Dataset includes 285 Wisconsin lakes. WBICs were assigned using geographic coordinates from dataset. WBIC for one lake could not be determined and was excluded.. Note regarding conductivity parameter: value represents calculated conductivity, as the sum of concentrations of each major cation and anion. It is not a parameter measured in the field or lab. Actual formula used to calculated conductivity was not discovered. Final dataset sr6 has 284 records7. Dataset: sr7 - Environmental Research Lab Duluth (ERLD). Temporal coverage: 1979-1982. Original description: ERLD Lake Survey. Contact(s): NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Chemical survey of 832 lakes in Minnesota, Michigan, Wisconsin and Ontario conducted by ERL-Duluth and UMD between 1979 and 1982 for evaluation of trophic state and sensitivity to acid deposition Glass, G.E. and Sorenson, J.A. (1994) USEPA ERLD-UMD acid deposition gradient-susceptibility database. U.S. EPA Environmental Research Laboratory - Duluth and University of Minnesota at Duluth, MN.Data manipulation for incorporation into database: Dataset included 428 Wisconsin records for which WBICs were included. Note: Original dataset had several errors in WBIC assignment: 1179900 was assigned to three different water bodies; correct WBICs are: 1503000, 1502400, 1481100; also 1515800 changed to 1516000. Lake Clara had 5 different stations for most parameters sampled. First station that had values for all parameters was included in final dataset. Final dataset sr7 has 428 records.8. Dataset: sr8 - Birge-Juday Historical Dataset. Temporal coverage: 1925-1941. Original description: Birge-Juday Historical Lake Data. Investigator(s): Edward A. Birge, Chauncy Juday. Contact: NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Data collected by Birge, Juday, and collaborators, mostly in north-central Wisconsin, from 1925 through 1941; generally one sample per lake during the summer, but on some lakes, especially around Trout Lake Station, samples were taken on several successive years. Note that not all variables were measured on all lakes (scarce data for nutrients and ions). Documentation: Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).WDNR Technical Report. Number of sites: 608 (generally one sampling point per lake; occasionally, several sampling points per lake on multibasin, large lakes).Data manipulation for incorporation into database: Original dataset downloaded from UW-Madison, Center for Limnology LTER website. Values averaged for lakes with multiple samples. WBICs assigned to 577 lakes via GIS spatial join using site coordinates and WDNR lake shapefile. Note from Johnson, M.D. (1984): the units for alkalinity (fixed CO2) changed from cc/L to mg/L sometime between Aug 1926 and May 1927. 17 entries were originally cc/l. Thus there might be inconsistencies in the alkalinity data. Final dataset sr8 has 577 records.9. Dataset: sr9 - USGS National Water Inventory System (NWIS). Temporal coverage: 1969-2009. Original description: U.S. Geological Survey. This file contains selected water-quality data for stations in the National Water Information System water-quality database (http://nwis.waterdata.usgs.gov/nwis/). Explanation of codes found in this file are followed by the retrieved data. The data you have secured from the USGS NWIS Web database may include data that have not received Director's approval and as such are provisional and subject to revision. The data are released on the condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use.Data manipulation for incorporation into database: Data downloaded for 240 lakes for the following parameters: calcium, conductivity, alkalinity, pH. Original parameter codes (USGS NWIS schema): p00915 p00095 p00400 p00916 p29801 p39086 p90095. Data are averaged for multiple measurements. WBICs assigned via GIS spatial join using site coordinates and WDNR lake shapefile. Final dataset sr9 has 240 records.10. Dataset: sr10 - WI Department of Natural Resources (WDNR) Temporal coverage: 1969-2009 Original description: available at http://dnr.wi.gov/org/water/swims/Data manipulation for incorporation into database: Original data received from Jennifer Filbert (WDNR). Data were extracted from WDNR Surface Water Integrated Monitoring System (SWIMS) database (http://dnr.wi.gov/org/water/swims/). Lakes represented had one or more of the following parameters: Secchi depth, calcium, conductivity, alkalinity, pH, total P, turbidity,, chlorophyll a. Data were averaged where multiple measurements were available. Final dataset sr10 has 53 records.The Data Source data table contains a summary of the 10 data sources with information on temporal coverage and record counts. It also includes information on the availability of calcium and conductivity data from the data sources.
Short Name
WILIMN1
Version Number
25

North Temperate Lakes LTER: Color - Trout Lake Area 1989 - current

Abstract
Color is measured four times a year in the seven northern study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog]) in water samples that are filtered in the field through 0.45 um nucleopore membrane filters. A spectrophotometer is used to quantify color in the lab as absorbance (unitless) at 1 nm intervals between the wavelengths of 200 and 800 nm (Note: Prior to August 2008, samples were initially run in 10cm cuvettes. Starting in Aug 2008, samples are initially run in 5cm cuvettes. Absorbance data are considered suspect for values greater than 2. Lakes with suspect data (typically, the bog lakes) are re-analyzed in the 200-400 nm range in 1 cm cuvettes. The data values are linear with respect to cuvette size. I.e, data from the 1cm cuvettes should be multiplied by 5 to be comparable with 5cm cuvette data and multiplied by 10 to be comparable with 10cm cuvette data. Data from 5cm cuvettes should be multiplied by 2 to be comparable with the older 10cm cuvette data. Sampling Frequency: 4 times annually Number of sites: 7
Dataset ID
87
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
We collect water samples for color at the deepest part of the lake four times per year: February under ice, spring mixis, August stratification, and fall mixis. The samples are surface water, filtered in the field through 0.45u polycarbonate membrane filters. We run a wavelength scan from 800 to 200nm, using a 5cm rectangular quartz cell in a Beckman Coulter Model DU800 spectrophotometer. Any samples that display absorbance values above 2AU are run again from 400 to 200nm using a 1cm quartz cuvette. Inititally the full range of wavelengths were run again and two values may be found in the database even if the original measurement with the large cuvette did not exceed 2AU. The user should discard values above 2AU and use values from the smaller cuvette instead. All values are given as measurements at the path lenth of the employed cuvette and need to be devided by the cuvette length for a comparable value at a pathlength of 1 cm.The single beam Beckman Coulter DU800 spec is blanked first on a sample of DI water. Additional blank values are from a scan run on DI after that blanking as a check and are reported alongside the scans but are not subtracted from the scan values. Protocol Log: 1990 -- we began running color scans, using a 10cm cylindrical cell with a Kontron spectrophotometer. 2001 -- we added scans in a 1cm cell for samples with high absorbance. July 2008 -- changed to Beckman Coulter DU800 spectrophotometer. At same time changed from 10cm to 5cm cell.
Short Name
NTLPH07
Version Number
31

North Temperate Lakes LTER: Lake Levels 1981 - current

Abstract
Lake level is measured at the shoreline using a twice-annually calibrated staff gauge for the seven primary lakes in the Trout Lake area (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes and unnamed lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog]). Values presented in the database represent the water height in meters above sea level. Sampling Frequency: fortnightly during ice-free season with the exception of 2020, in which sampling was monthly. Number of sites: 7
Dataset ID
30
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
methods described in abstract
Short Name
NTLPH02
Version Number
26

North Temperate Lakes LTER: Secchi Disk Depth; Other Auxiliary Base Crew Sample Data 1981 - current

Abstract
Secchi disk depth is measured in the deepest part of each lake for the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Fish, Mendota, Monona and Wingra). The disk is circular, 20 cm in diameter, and has alternating black and white quadrants. It is lowered using a calibrated Kevlar rope to minimize stretching. Readings are made on the shaded side of the boat both with and without the aid of a plexiglass viewer. The points at which the disk disappears while being lowered and reappears while being raised are averaged to determine Secchi depth. Auxiliary data include time of day, air temperature, cloud cover, wave height, wind speed and direction and whether the lake was ice covered on the sampledate. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season for the northern lakes. The southern lakes are similar except that sampling occurs monthly during the fall and typically only once during the winter (depending on ice conditions). Number of sites: 11
Dataset ID
31
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
see abstract for secchi disc measurements. Otherwise, these are observations made by the crew while out sampling.
Short Name
NTLPH03
Version Number
30

North Temperate Lakes LTER: Physical Limnology of Primary Study Lakes 1981 - current

Abstract
Parameters characterizing the physical limnology of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish) are measured at one station in the deepest part of each lake at 0.25-m to 1-m depth intervals depending on the lake. Measured parameters in the data set include water temperature, vertical penetration of photosynthetically active radiation (PAR; not measured on lakes Mendota, Monona, Wingra, and Fish), dissolved oxygen, as well as the derived parameter percent oxygen saturation. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season for the northern lakes. The southern lakes are similar except that sampling occurs monthly during the fall and typically only once during the winter (depending on ice conditions). Number of sites: 11
Core Areas
Dataset ID
29
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Light (PAR) extinction coefficient is calculated by linearly regressing ln (FRLIGHT (z)) on depth z where the intercept is not constrained. FRLIGHT(z) = LIGHT(z) or DECK(z) where LIGHT(z) is light measured at depth z and DECK(z) is light measured on deck (above water) at the same time. For open water light profiles, the surface light measurement (depth z = 0) is excluded from the regression. For winter light profiles taken beneath the ice, the first light data are taken at the bottom of the ice cover and are included in the regression. The depth of uppermost light value is equal to the depth of the ice adjusted by the water level in the sample hole, i.e., the depth below the surface of the water. The water level can be at, above or below the surface of the ice. If the water level was not recorded, it is assumed to be 0.0 and the calculated light extinction coefficient is flagged. If ice thickness was not recorded, a light extinction coefficient is not calculated. For light data collected prior to March, 2007, light values less than 3.0 (micromolesPerMeterSquaredPerSec) are excluded. For light data collected starting in March 2007, light values less than 1.0 (micromolesPerMeterSquaredPerSec) are excluded. Except for bog lakes before August 1989, a light extinction coefficient is not calculated if there are less than three FRLIGHT values to be regressed. For bog lakes before August 1989, a light extinction coefficient is calculated if there are least two FRLIGHT values to be regressed. In these cases, the light extinction coefficient is flagged as non-standard. FRLIGHT values should be monotonically decreasing with depth. For light profiles where this is not true, a light extinction coefficient is not calculated. For samples for which light data at depth are present, but the corresponding deck light are missing, a light extinction coefficient is calculated by regressing ln (LIGHT (z)) on depth z. Note that if actual deck light had remained constant during the recording of the light profile, the resulting light extinction coefficient is the same as from regressing ln(FRLIGHT(z)). In these cases, the light extinction coefficient is flagged as non-standard. Oxygen and Temperature: We sample at the deepest part of the lake, taking a temperature and oxygen profile at meter intervals from the surface to within 1 meter of the bottom using a YSI Pro-ODO temporDO meter. We sample biweekly during open water and approximately every five weeks during ice cover. Protocol Log: Prior to 2011, we used a YSI Model 58 temporDO meter.
Short Name
NTLPH01
Version Number
28

North Temperate Lakes LTER: Groundwater Levels 1984 - current

Abstract
Water levels in monitoring wells are measured several times throughout the year. The number of monitored wells has ranged over the study period from 19 to 44 wells. Currently, 37 wells are being monitored 4 - 5 times per year. The wells are scattered throughout the Trout Lake hydrological basin and the data are used to calibrate and test regional groundwater flow models. In addition (see related data set - Groundwater Chemistry), water chemistry is measured annually in a subset of 11 of these wells to characterize regional groundwater chemistry in the Trout Lake area. Sampling Frequency: varies - generally from 4 - 9 times a year Number of sites: 44
Dataset ID
9
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Standard water level measurements in ground water wells. See abstract for more methods descriptions.
Short Name
NTLGW01
Version Number
22

North Temperate Lakes LTER: High Frequency Water Temperature Data - Sparkling Lake Raft 1989 - current

Abstract
The instrumented raft on Sparkling Lake is equipped with a thermistor chain that measures water temperature from depths ranging from the surface to 18m at intervals from 0.5 to 3m throughout the water column. The surface temperature sensors are attached to floats so that they are as close to the surface as feasible. The raft on Sparkling Lake is also equipped with a dissolved oxygen sensor and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, evaporation rates, and lake metabolism. Estimating the flux of solutes to and from lakes requires accurate water budgets. Evaporation rates are a critical component of the water budget of lakes. Data from the instrumented raft on Sparkling Lake includes micrometeorological parameters from which evaporation can be calculated. Raft measurements of relative humidity and air temperature (2 m height), wind velocity (1, 2, and 3 m heights), and water temperatures are combined with measurements of total long-wave and short-wave radiation data from a nearby shore station to determine evaporation by the energy budget technique. Comparable evaporation estimates from mass transfer techniques are calibrated against energy budget estimates to produce a lake-specific mass transfer coefficient for use in estimating evaporation rates Sampling Frequency: one minute; averaged to hourly and daily values as well as higher resolution values such as 2 min and 10 min. Number of sites: 1
Dataset ID
5
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
see abstract for methods description
Short Name
NTLEV02
Version Number
22

North Temperate Lakes LTER: High Frequency Meteorological and Dissolved Oxygen Data - Sparkling Lake Raft 1989 - current

Abstract
The instrumented raft on Sparkling Lake is equipped with a dissolved oxygen and CO2 sensors, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, evaporation rates, and lake metabolism. Estimating the flux of solutes to and from lakes requires accurate water budgets. Evaporation rates are a critical component of the water budget of lakes. Data from the instrumented raft on Sparkling Lake includes micrometeorological parameters from which evaporation can be calculated. Raft measurements of relative humidity and air temperature (2 m height), wind velocity ( at 1, 2, and 3 m heights; but beginning in 2008, only at 2 m) ,and water temperatures (from thermistors placed throughout the water column at intervals varying from 0.5 to 3m) are combined with measurements of total long-wave and short-wave radiation data from a nearby shore station to determine evaporation by the energy budget technique. Comparable evaporation estimates from mass transfer techniques are calibrated against energy budget estimates to produce a lake-specific mass transfer coefficient for use in estimating evaporation rates. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Other parameters measured include precipitation, wind direction (beginning in 2008), and barometric pressure (beginning in 2008). Sampling Frequency: one minute; averaged to hourly and daily values as well as higher resolution values such as 2 min and 10 min. Number of sites: 1
Core Areas
Dataset ID
4
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
The instrumented raft on Sparkling Lake is equipped with a D-Opto dissolved oxygen sensor, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, evaporation rates, and lake metabolism. Estimating the flux of solutes to and from lakes requires accurate water budgets. Evaporation rates are a critical component of the water budget of lakes. Data from the instrumented raft on Sparkling Lake includes micrometeorological parameters from which evaporation can be calculated. Raft measurements of relative humidity and air temperature (2 m height), wind velocity ( at 1, 2, and 3 m heights; but beginning in 2008, only at 2 m) ,and water temperatures (from thermistors placed throughout the water column at intervals varying from 0.5 to 3m) are combined with measurements of total long-wave and short-wave radiation data from a nearby shore station to determine evaporation by the energy budget technique. Comparable evaporation estimates from mass transfer techniques are calibrated against energy budget estimates to produce a lake-specific mass transfer coefficient for use in estimating evaporation rates. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Other parameters measured include precipitation, wind direction (beginning in 2008), and barometric pressure (beginning in 2008). Sampling Frequency: one minute; averaged to hourly and daily values as well as higher resolution values such as 2 min and 10 min.Dissolved oxygen sensors: 2004-2006: Greenspan Technology series 1200; 2007-2016: Zebra-Tech Ltd. D-Opto; 2018+: OTT HydrolabCO2 sensors: 2018+: ProOceanos MiniCO2 for dissolved CO2; Eosense Inc. eosGP for atmospheric CO2
Short Name
NTLEV01
Version Number
33

North Temperate Lakes LTER: High Frequency Water Temperature Data - Sparkling Bog North Buoy 2008 - current

Abstract
The instrumented buoy on Sparkling Bog North is equipped with a thermistor chain that measures water temperature at the surface, at 0.25 m and at every .5 m from 0.5 m to 4.5 m. The surface temperature sensors are attached to floats so that they are as close to the surface as feasible. The buoy is also equipped with a dissolved oxygen sensor, meteorological sensors, a CO2 sensor and a YSI AutoProfiler that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Prior to May 2009, data were collected at 1 minute or 10 minute intervals. Since May 2009, data are being collected each minute. Hourly and daily water temperature averages are computed from high resolution data. Hourly and daily values may not be current with high resolution data. In 2008, the instrumented buoy was deployed in Sparkling Bog North from March 24 to November 10. In 2009, the buoy was deployed on the ice on March 7 and was not removed for the winter of 2009 to 2010. Sampling Frequency: varies for instantaneous sample. Generally 1 minute or 10 minutes. Number of sites: 1
Dataset ID
228
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
The instrumented buoy on Sparkling Bog North is equipped with a thermistor chain that measures water temperature at the surface, at 0.25 m and at every .5 m from 0.5 m to 4.5 m. The buoy is also equipped with a dissolved oxygen sensor, meteorological sensors, a CO2 sensor and a YSI AutoProfiler that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Prior to May 2009, data were collected at 1 minute or 10 minute intervals. Since May 2009, data are being collected each minute. Hourly and daily water temperature averages are computed from high resolution data. Hourly and daily values may not be current with high resolution data. In 2008, the instrumented buoy was deployed in Sparkling Bog North from March 24 to November 10. In 2009, the buoy was deployed on the ice on March 7 and was not removed for the winter of 2009 to 2010. Sampling Frequency: varies for instantaneous sample.
Short Name
NSPBBUOY2
Version Number
18

North Temperate Lakes LTER: High Frequency Meteorological and Dissolved Oxygen Data - Sparkling Bog North Buoy 2008 - 2012

Abstract
The instrumented buoy on Sparkling Bog North is equipped with a dissolved oxygen sensor, a thermistor chain, and meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Data are usually collected either at 1 minute or 10 minute intervals. The D-Opto dissolved oxygen sensor is 0.5m from the lake surface, thermistors are at the surface, at 0.25 m and at every .5 m from 0.5 m to 4.5 m, and meteorological sensors measure wind speed, wind direction, relative humidity, and air temperature. The buoy is also equipped with a CO2 monitor and a YSI AutoProfiler that measures several parameters including dissolved oxygen, water temperature, conductivity, pH, ORP, turbulence and chlorophyll-a. After correcting for flux to or from the atmosphere and vertical mixing within the water column, high frequency measurements of dissolved gases such as carbon dioxide and oxygen can be used to estimate gross primary productivity, respiration, and net ecosystem productivity, the basic components of whole lake metabolism. Sampling Frequency: varies for instantaneous sample. Generally 1 minute or 10 minutes. Number of sites: 1
Core Areas
Dataset ID
227
Date Range
-
Maintenance
completed
Metadata Provider
Methods
see abstract for methods description
Short Name
NSPBBUOY1
Version Number
20
Subscribe to physical limnology