US Long-Term Ecological Research Network

North Temperate Lakes LTER Morphometry and Hypsometry data for core study lakes

Abstract
Morphometric data for NTL study lakes. These are area and volume at one meter depth interval.hp-factor in percent volume for each depth layer NTL core study lakes
Dataset ID
301
Date Range
Maintenance
completed
Metadata Provider
Methods
The morphometric data was determined from areas measured at each 5 foot contour using a planimeter, except for Trout Lake which had 10 foot contours by Robertson in 1984. The areas were taken as an average of four planimeter readings. The maps used were the most recent version of the Wisconsin Department of Natural Resources maps for the lakes (Allequash - 1930; Big Muskellunge - 1972; Crystal - 1971; Trout - 1969; Mary - 1984). Most measurements were done in 1982 by Dale Robertson.The results were converted to meters as follows: First the areas at each depth were plotted on a large graph of percent of surface area versus depth, the points were connected assuming a linear change in area between depths. The depth axis was then converted to meters and areas at each meter were obtained.The volume of each layer in the unit column, has a center at whole meters except the top and bottom layer. Most layers are from half meter to half meter, i.e. 0.5 to 1.5m, read in the 1.0m row.
Short Name
Hypsometry
Version Number
21

WDNR Yahara Lakes Fisheries: Fish Lengths and Weights 1987-1998

Abstract
These data were collected by the Wisconsin Department of Natural Resources (WDNR) from 1987-1998. Most of these data (1987-1993) precede 1995, the year that the University of Wisconsin NTL-LTER program took over sampling of the Yahara Lakes. However, WDNR data collected from 1997-1998 (unrelated to LTER sampling) is also included. In 1987 a joint project by the WDNR and the University of Wisconsin-Madison, Center for Limnology (CFL) was initiated on Lake Mendota. The project involved biomanipulation of fish communities within the lake, which was acheived by stocking game fish species (northern pike and walleye). The goal was to induce a trophic cascade that would improve the water clarity of Lake Mendota. See Lathrop et al. 2002. Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. Freshwater Biology 47, 2410-2424. In collecting these data, the objective was to gather population data and monitor populations to track the progress of the biomanipulation. The data is dominated by an assesssment of the game fishery in Lake Mendota, however other Yahara Lakes and non-game fish species are also represented. A combination of gear types was used to gather the population data including boom shocking, fyke netting, mini-fyke netting, seining, and gill netting. Not every sampling year includes length and weight data from all gear types. The WDNR also carried out randomized, access-point creel surveys to estimate fishing pressure, catch rates, harvest, and exploitation rates. Five data files each include length-weight data, and are organized by the type of gear or method which was used to collect the data: 1) fyke, mini-fyke, and seine netting 2) boom shocking 3) gill netting (1993 only) 4)walleye age as determined by scale and spine analysis (1987 only), and 5) creel survey. The final data file contains creel survey information: number of anglers fishing the shoreline, and number of anglers that started and completed trips from public and private access points.
Core Areas
Dataset ID
279
Date Range
-
Metadata Provider
Methods
BOOM SHOCKING1987:A standard WDNR electrofishing boat was used on Lake Mendota set at 300 volts and 2.5 amps (mean) DC, with a 20 % duty cycle and 60 pulses per second. On all sampling dates two people netted fish, the total electrofishing crew was three people. Shocking was divided into stations. For each station, the actual starting and ending time was recorded. Starting and ending points of each station were plotted on a nap. A 7.5 minute topographic map (published 1983) and a cartometer was used to develop a standardized shoreline mileage numbering scheme. Starting at the Yahara River outlet at Tenney Park and measuring counterclockwise, the shoreline was numbered according to the number of miles from the outlet. The length of shoreline shocked for each station was determined using the same maps. The objectives of the fall 1987 electrofishing was: to gather CPE data for comparison with previous surveys of the lake; develop a database for relating fall electroshocker CPE to predator density; collect fall predator diet data; make mark-recapture population estimates of YOY predators; and determine year-class-strength of some nonpredators (yellow perch, yellow bass, and white bass).1993: Electrofishing was used to continue marking largemouth and smallmouth bass (because of low CPE in fyke nets), to recapture fish marked in fyke netting, and to mark and recapture walleyes ( less than 11.0 in.) on Lake Mendota. Four person crews electrofished after sunset from May 05 to June 03, 1993. A standard WDNR electrofishing boat was used, set at about 300 volts and 15.0 amps (mean) DC, with a 20 % duty cycle at 60 pulses per second. On all sampling dates two people netted fish; thus, CPE data are given as catch per two netter hour or mile. Shocking was divided into stations. For each station the actual starting and ending time and the generator s meter times was recorded. Starting and ending points of each station were plotted on a map. 7.5 minute topographic maps (published in 1983) were used in addition to a cartometer to develop a standardized shoreline mileage numbering scheme. Starting at the Yahara River outlet at Tenney Park and measuring counterclockwise the shoreline was numbered according to the number of miles from the outlet. The length of shoreline shocked for each station was determined using these maps. The 4 person electroshocker crews were used again from September 20 to October 19. Fall shocking had several objectives: to gather CPE data for comparison with previous surveys of the lake; develop a database for relating fall electroshocker CPE to piscivore density; and make mark recapture population estimates of young of year (YOY) piscivores.1997:5/13/1997-5/20/1997: Electrofishing was completed at night on lakes: Mendota, Monona, and Waubesa. A standard WDNR electrofishing boat was used, set from 320-420 volts and 16-22 amps DC, with a 20 % duty cycle at 50 pulses per second. Two netters were used for each shocking event. At a particular station, starting and ending times where shocking took place were recorded. The location of the designated shocking stations is unknown.9/23/1997-10/14/1997: Electrofishing was completed at night on Mendota, Monona, Waubesa, and Wingra. A standard WDNR electrofishing boat was used, set from 315-400 volts and 16-24 amps DC, with a 20% duty cycle at 60 pulses per second. Two netters were used for each shocking event. Starting and ending time at each shocking station was listed. The location of the designated shocking stations is unknown.1998:Electrofishing was completed at night on Mendota, Monona, Wingra, and Waubesa from 5/12/1998- 10/28/1998. A standard WDNR electrofishing boat was used, set from 240-410 volts and 15-22 amps DC, with a 20% duty cycle at 50-100 pulses per second. Two netters were used for each shocking event. Starting and ending time at each shocking station was listed. The location of the designated shocking stations is unknown. FYKE NETTING1987:Fyke nets were fished daily from March 17 to April 24, 1987 on Lake Mendota. The nets were constructed of 1.25 inch (stretch) mesh with a lead length of 50 ft. (a few 25 ft. leads were used). The hoop diameter was 3 ft. and the frame measured 3 ft. by 6 ft. Total length of the net was 28 ft. plus the lead length. Nets were set in 48 unknown locations. Initially, effort was concentrated around traditional northern pike spawning sites (Cherokee Marsh, Sixmile Creek, Pheasant Branch Creek, and University Bay). As northern pike catch-per-effort (CPE) declined some nets were moved onto rocky shorelines of the lake to capture walleyes. All adult predators (northern pike, hybrid muskie, largemouth and smallmouth bass, walleye, gar, bowfin, and channel catfish) captured were tagged and scale sampled. Measurements on non-predator species captured in fyke nets were made one day per week. This sampling was used to index size structure and abundance, and to collect age and growth data. In each net, total length and weight of 20 fish of each species caught was measured, and the remaining caught were counted.1993:Same methods as 1987, except fyke nets were fished from 4/8/1993-4/29/1993 on Lake Mendota. The 1993 fyke net data also specifies the &ldquo;mile&rdquo; at which the fyke net was set. This is defined as the number of miles from the outlet of the Yahara River at Tenney Park, moving counterclockwise around the lake. In addition, abundance and lengths of non-gamefish species captured in fyke nets were recorded one day per week. Six nets were randomly selected to sample for non-gamefish data. This sampling was used to index size structure and abundance, and to collect age and growth data. In each randomly selected net, total length and weight was measured for 20 fish of each species, and the remaining caught were counted.1998:There is no formal documentation for the exact methods used for fyke netting from 3/3/1998-8/12/1998 on Lake Mendota. However, given that the data is similar to data collected in 1987 and 1993 it is speculated that the same methods were used.MINI-FYKE NETTING1989:There is no formal documentation for the exact methods used for mini-fyke netting on Lake Mendota and Lake Monona from 7/26/1989-8/25/1989. However, given that the data is similar to data collected from 1990-1993 it is speculated that the same methods were used. In the sampling year of 1989, mini-fyke nets were placed at 22 different unknown stations.1990-1993: Mini-fyke nets were fished on Lake Mendota and Lake Monona during July-September at 20, 29, 13, and 15 sites per month during 1990, 1991, 1992, and 1993, respectively to estimate year-class strength, relative abundance, and size structure of fishes in the littoral zone. Nets were constructed with 3/16 in. mesh, 2 ft. diameter hoops, 2 ft. x 3 ft. frame, and a 25 ft. lead. Sites were comparable to seine sites used in previous surveys. Sites included a variety of substrate types and macrophyte densities. To exclude turtles and large piscivores from minifyke nets, some nets were constructed with approximately 2 in. by 2 in. mesh at the entrance to the net. Thus, mini-fyke net data are most accurate for YOY fishes, and should not be used to make inferences about fishes larger than the exclusion mesh size. 1997:There is no formal documentation for the mini-fyke methods which were used on Lake Waubesa and Lake Wingra from 9/16/1997-9/18/1997. However, given that the data is similar to data collected in 1989, and 1990-1993, it is speculated that the methods used during 1997 are the same. SEINE NETTING1989, 1993: Monthly shoreline seining surveys were conducted on Lake Mendota and Lake Monona during June through September to estimate year class-strength, relative abundance, and size structure of the littoral zone fish community. Twenty sites were identified based on previous studies. Sites included a variety of substrate types and macrophyte densities. Seine hauls were made with a 25ft bag seine with 1/8 inch mesh pulled perpendicular to shore starting from a depth of 1 m. Twenty fish of each species were measured from each haul and any additional fish were counted. Gill Netting (1993)Experimental gill nets were fished in weekly periods during June through August, 1993. Gill nets were used to capture piscivores for population estimates of fish marked in fyke nets. All nets were constructed of five 2.5-4.5 in. mesh panels, and were 125 ft. long. Nets set in water shallower than 10 ft. were 3ft. high or less; all others were 6ft. high or less. Sampling locations were selected randomly from up to three strata: 1) offshore reef sets, 2) inshore sets, 6.0-9.9 ft. deep, and 3) mid-depth sets, 10-29.9 ft. deep. The exact location at which the gill nets were set on the lake is unknown because the latitude and longitude values which were recorded by the WDNR are invalid. Temperature and dissolved oxygen profiles were used to monitor the development of the thermocline and guide net placement during July and August. After the thermocline was established nets were set out to the 30 ft. contour or to the maximum depth with dissolved oxygen greater than 2 ppm. Walleye Age: Scale and Spine Analysis (1987) Scales were taken from walleye that were shocked during the fall of 1987 electrofishing events on Lake Mendota. Scales were taken from 10 fish per one-inch length increment. The scales were removed from behind the left pectoral fin, and from the nape on the left side on esocids. In addition, the second dorsal spine was removed from 10 walleyes per sex and inch increment (to age and compare with scale ages for fish over 20 inches). CREEL SURVEYS1989:Fishing pressure, catch rates, harvest, and exploitation rates were estimated from a randomized, access-point creel survey. The schedule was stratified into weekday and weekend/holiday day types. Shifts were selected randomly and were either 07:00-15:00 h or 15:00-23:00 h. In addition, two 23:00-03:00 h shifts and two 03:00-07:00 h shifts were sampled per month to estimate the same parameters during night time hours. During the ice fishing season (January-February) 22 access points around Lake Mendota and upstream to the Highway 113 bridge were sampled. The clerk counted the number of anglers starting and completing trips during the scheduled stop at each access point. During openwater (March-December) 13 access points were sampled; 10 were boat ramps and 3 were popular shore fishing sites<strong>. </strong>At each of these sites, an instantaneous count of shore anglers was made upon arrival at the site, continuous counts of anglers starting and completing trips at public and private access points were made. Boat occupants and ice fishing anglers were only interviewed if they were completing a trip. Both complete and incomplete interviews were made of shore anglers. Number caught and number kept of each species, and percent of time seeking a particular species were recorded. All predators possessed by anglers were measured, weighed, and inspected for finclips and tags. We measured a random sample of at least 20 fish of each non-predator species per day.1990-1993: Same as 1989, except 23 access points were used during the ice fishing season. In addition, 13 access points were sampled during the openwater (May-December) season; 9 sites were boat ramps and 4 sites were popular shore fishing sites. 1994-1999: No formal documentation exists, but given the similarity in the data and consistency through the years; it is speculated tha tthe methods are the same.
Version Number
19

North Temperate Lakes LTER: Northern Wisconsin Lake Resident Survey 2005 and 2008

Abstract
The purpose of this survey was to understand what lake characteristics people value most, what activities they enjoy most, and what they expect for the future of northern Wisconsin lakes. Questions covered aspects such as the property search process individuals went through leading up to their purchase of lakeshore property in Vilas County WI, what activities the individual&#39;s household participate in on lakes in Vilas County WI, their attitude about the future of their lake, their perception of the current state of their lake, and lake qualities they would like improved on their lake. Demographics of the respondents and background information about their lake were also collected. Two types of surveying methodologies were used for this survey, one being an internet-based survey, while the other was a mail survey. Surveys were conducted in 2005 and repeated in 2008.
Dataset ID
275
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
These surveys were conducted via web and mail. Full survey text: http://lter.limnology.wisc.edu/sites/default/files/ntl/pdf/Lakeshore%20survey%202008.pdf
Short Name
NWLRSURV12
Version Number
16

North Temperate Lakes LTER: Physical Limnology of Lake Kegonsa and Lake Waubesa 1995 - current

Abstract
Parameters characterizing the physical limnology of Lakes Waubesa and Kegonsa are measured at one station in the deepest part of each lake at 0.5-m to 1-m depth intervals. Measured parameters in the data set include water temperature and dissolved oxygen, as well as the derived parameter percent oxygen saturation.Number of sites: 2. Sampling Frequency: bi-weekly during ice-free season from late March or early April through early September, then every 4 weeks through late November; sampling is conducted usually once during the winter (depending on ice conditions).
Dataset ID
264
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
G. Reading Temperature and Dissolved Oxygen 1. Before leaving to sample a lake, check to make sure that there are no air bubbles under the probe membrane of the YSI TemperatureorDissolved Oxygen meter. If there are air bubbles or if it has been several months since changing the membrane (or if the instrument does not calibrate well or the oxygen readings wander), change the membrane as explained in the manual. Note: We have always used the Standard membranes. If adding water to new membrane fluid bottle (KCl), make sure to add Milli-Q water and not the CFL distilled water. 2. Be sure to always store the probe in 100percent humidity surrounded by a wet sponge or paper towel. 3. Turn on the temperatureordissolved oxygen meter at least 30 minutes before using it. It is best to turn it on before leaving to sample a lake as it uses up batteries slowly. 4. Calibrate the meter using the chart on the back of the instrument (adjusted to the Madison altitude - 97percent oxygen saturation). Leave the plastic cap on the probe (at 100percent humidity). The temperature should not be changing during the calibration. Zero the instrument. When the temperature equilibrates, adjust the oxygen to correspond to the chart. After calibrating the instrument, switch the knob to percent oxygen saturation to make sure it is close to 97percent. 5. Take readings at 1 meter intervals making sure to gently jiggle the cord when taking the oxygen readings (to avoid oxygen depletion). Jiggling the cord is not necessary if using a cable with a stirrer. Take half meter readings in the metalimnion (when temperature andoror oxygen readings exhibit a greater change with depth). A change of temperature greater than 1degreeC warrants half-meter intervals. 6. Record the bottom depth using the markings on the temp.oroxygen meter cord and take a temperature and dissolved oxygen reading with the probe lying on the lake bottom. Dont forget to jiggle the probe to remove any sediment. 7. If any readings seem suspicious, check them again when bringing the probe back up to the surface. You can also double check the calibration after bringing the probe out of the water (and putting the cap back on).
Short Name
KEWAPH01
Version Number
22

North Temperate Lakes LTER: Color - Trout Lake Area 1989 - current

Abstract
Color is measured four times a year in the seven northern study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog]) in water samples that are filtered in the field through 0.45 um nucleopore membrane filters. A spectrophotometer is used to quantify color in the lab as absorbance (unitless) at 1 nm intervals between the wavelengths of 200 and 800 nm (Note: Prior to August 2008, samples were initially run in 10cm cuvettes. Starting in Aug 2008, samples are initially run in 5cm cuvettes. Absorbance data are considered suspect for values greater than 2. Lakes with suspect data (typically, the bog lakes) are re-analyzed in the 200-400 nm range in 1 cm cuvettes. The data values are linear with respect to cuvette size. I.e, data from the 1cm cuvettes should be multiplied by 5 to be comparable with 5cm cuvette data and multiplied by 10 to be comparable with 10cm cuvette data. Data from 5cm cuvettes should be multiplied by 2 to be comparable with the older 10cm cuvette data. Sampling Frequency: 4 times annually Number of sites: 7
Dataset ID
87
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
We collect water samples for color at the deepest part of the lake four times per year: February under ice, spring mixis, August stratification, and fall mixis. The samples are surface water, filtered in the field through 0.45u polycarbonate membrane filters. We run a wavelength scan from 800 to 200nm, using a 5cm rectangular quartz cell in a Beckman Coulter Model DU800 spectrophotometer. Any samples that display absorbance values above 2AU are run again from 400 to 200nm using a 1cm quartz cuvette. Inititally the full range of wavelengths were run again and two values may be found in the database even if the original measurement with the large cuvette did not exceed 2AU. The user should discard values above 2AU and use values from the smaller cuvette instead. All values are given as measurements at the path lenth of the employed cuvette and need to be devided by the cuvette length for a comparable value at a pathlength of 1 cm.The single beam Beckman Coulter DU800 spec is blanked first on a sample of DI water. Additional blank values are from a scan run on DI after that blanking as a check and are reported alongside the scans but are not subtracted from the scan values. Protocol Log: 1990 -- we began running color scans, using a 10cm cylindrical cell with a Kontron spectrophotometer. 2001 -- we added scans in a 1cm cell for samples with high absorbance. July 2008 -- changed to Beckman Coulter DU800 spectrophotometer. At same time changed from 10cm to 5cm cell.
Short Name
NTLPH07
Version Number
31

North Temperate Lakes LTER: Chlorophyll - Trout Lake Area 1981 - current

Abstract
Chlorophyll and phaeopigments are measured at our permanent sampling station in the deepest part of each lake. Chlorophyll samples are collected from the seven primary study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes and bog lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog]) in the Trout Lake area at two to 10 depths depending on the lake and analyzed spectrophotometrically. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season Number of sites: 7
Core Areas
Dataset ID
35
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Spectrophotometer:A. Chlorophyll Extraction (using tissue grinder at DNR Research Station) 1. Dim the lights and keep the sample tubes in the freezer: Because chlorophyll degrades when exposed to light and heat, this procedure and all others associated with analyzing chlorophyll should be carried out in dim light conditions. Only one sample tube should be out of the freezer at any one time while the pre-grinding or grinding procedure is occurring. Return each tube to the freezer as soon as its filter has been ground. 2. Pre-grind filters: Use the sharpened stainless steel probe to chop up the filter into small pieces. This should take approximately 2 minutes. 3. Grind filters: The teflon tip on the tissue grinder should be sanded after grinding approximately 5 filters. Grind each filter for 2 minutes. Do not lift the teflon tip out of the test tube while the grinder is rotating. Grind the filters by attempting to keep the teflon tip in the acetone solution and pressing the tip against the filter and the tube. 4. Return the sample tubes to the freezer for 24 hours: Most protocols call for extracting the samples in the refrigerator (at 4 degrees C). However, after extracting duplicate samples in the freezer and refrigerator (after grinding) there was no significant difference in the chlorophyll results. Because past samples have been extracted in the freezer, this is the current procedure being used. B. Centrifuging the Samples: The samples should be centrifuged as close as possible to 24 hours after extraction. Before centrifuging the samples, turn on the spectrophotometer and enter the correct program number to be sure that it is working properly. Perform the procedures below in dim light. 1. Checking acetone volume: In dim light, use an identical tube as those used for the samples but with mL marked on it, to measure the volume of the acetone in the samples. Measure to the nearest 0.5 mL. If the sample has any other volume than 5 mL, write the volume on the sample label and remember to enter the volume later into the spreadsheet. 2. Loading the centrifuge: Making sure that the rubber stoppers are on tight, put tubes with equal acetone volumes opposite each other in the centrifuge. If there is an odd tube remaining or a tube with a different volume, put a spare tube opposite the sample with the same volume of water to counterbalance the centrifuge. 4. Running the centrifuge: Turn the speed dial below 40. Turn the timer past 15 minutes. Slowly turn up the speed allowing time for the centrifuge to increase in speed. If there is an imbalance in the centrifuge (or any other problem), the centrifuge will run much louder than normal. In this case, stop the centrifuge and attempt to locate the imbalance. If the centrifuge is running smoothly, set the speed at 90 and the timer at 15 minutes. Previously, the numbers on the dial were believed to correspond to revolutions per second; however, this is not the case, for the centrifuge will only reach rpms of approximately 2500. 5. Unloading the centrifuge: Allow the centrifuge to come to a stop on its own. Carefully take each sample tube out of the centrifuge with minimal mixing. If the filter paper is mixed with the liquid, it will be necessary to re-centrifuge the sample. Transport the samples to the spectrophotometer in a rack that has tinfoil on the sides in order to block out the light. C. Running a Sample: 1. Select the test: Allow the spectrophotometer to warm up for at least 15 minutes. Select the proper program by pressing the test number followed by Select. 2. Rinse the cuvettes 3 times with acetone. It is most efficient to rotate 4 matching 1 cm cuvettes. Try to touch the cuvettes only on the opaque sides avoiding touching the clear sides especially on the lower half of the cuvette. 3. Run a blank and check that all cuvettes read near 0: Add acetone to the 4 matching cuvettes (at least half full), wipe them clean with a tissue, and insert them into the spectrophotometer with the labeled sides all facing the same direction (always put the tops on the cuvettes when they are in the spec). Press Run and the spec. will ask for a blank. Use one of the cuvettes filled with acetone as the blank. Once the blank is run, run all of the cuvettes (the cuvette position is changed by pulling out the metal rod to the next notched position). All of the readings at all wavelengths should be within .001 of 0. If this is not the case, remove the suspect cuvette and rinse, wipe, add acetone, and rerun it. Make sure that the correct program is being run by checking the wavelengths. The LTER samples should be run at 750, 665, 664, 647, and 630 nm. 4. Rinse the pipette tip: Before adding sample to a cuvette, the pipette tip should be rinsed with acetone. You should have 2 different sized beakers, one for waste and one for acetone rinse. Set the 10-1000uL pipette to 1000 uL (1 mL) and pipette 1mL of acetone from the rinse beaker and dispose of it in the waste beaker. Be sure that the pipette tip is firmly on the pipette (press it on the bottom of the rinse beaker). 5. Add sample to a cuvette: Before bringing the samples into the spectrophotometer room, turn off the overhead light and turn on the desk light in the corner. Carefully remove a sample from the rack and pipette approximately 2 mL of sample into a cuvette. Use caution not to suck up any filter paper into the pipette; tilt the sample to the side and submerge the pipette tip only just below the fluid level. If the pipette tip is getting close to the filter paper when removing the second mL of sample, stop pipetting and add the partial mL to the cuvette (it is possible to read approximately 1.5 mL of sample). 6. Check the 750 nm reading and run the sample: Insert the cuvette into the spec. (making sure that the labeled side is always facing in the same direction). The default reading on the spec is 750 nm. Check to make sure that this reading is less than 0.010 A. If the reading is higher, remove the cuvette and re-wipe it with a tissue. If the reading is still high, pour the sample back into the tube and re-centrifuge it. To run the sample press Run. 7. Acidify the sample: Once the sample has been run, remove it from the spec and add 60 uL of 0.1 N HCl (30 uL per 1 mL of sample). Gently shake the sample and wait 90 seconds to run it. 8. Check the acidification ratio: The before acidorafter acid ratio of the LTER samples is usually between 1.3 and 1.7. Compare the two readings to make sure the ratio fits in this range. If the ratio is higher than 1.7, re-acidify the sample and run it again (the acid probably did not make contact with the sample). 9. Rinse the cuvette: After checking the acidification ratio, dispose of the sample in the waste beaker and rinse the cuvette 3 times with acetone. Be sure to fill the cuvette to the top with acetone during each rinse to be sure that there is not any trace of acid left. Running Multiple Samples: 1. It may be more efficient to run 2 samples before acidification and then run them both after acidification. If this is done, take caution to add the correct sample to the correct cuvette and not to mix up the samples when they are removed from the spec. for acidification. Recording the Results: 1. Write the spec. id number located on the left of the printout onto the label of the corresponding sample. Each sample should have a before and an after acidification spec. id number written on its label. After all of the samples have been run, enter the date of analysis onto the spec. printout. This date will be used to identify the spec. printout when the data is proofread (after which proofed from spec. printout should be written on the spreadsheet). Clean-up: 1. Rinse the cuvettes 3 times with acetone, allow them to dry for several minutes in the cuvette rack, and return them to their box. 2. Solutions of less than 20percent Acetone can be disposed of down the drain followed by at least 10 volumes of water. Fill the waste beaker with water and pour the waste down the sink with the water running. Leave the water running for several minutes 3. Rinse the beakers and pipette tips 3 times with tap water followed by 3 rinses with distilled water. Hang the beakers on the drying rack. &nbsp;
Short Name
NTLPL01
Version Number
30

North Temperate Lakes LTER: Light Extinction - Trout Lake Area 1981 - current

Abstract
A light (PAR) extinction coefficient is calculated for the water column for the seven northern study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog]). The fraction of surface light is computed at 0.25-m to 1-m depth intervals depending on the lake. The light (PAR) extinction coefficient is calculated by regressing ln(fraction of light(z)) on depth z. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season Number of sites: 7
Dataset ID
259
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Light (PAR) extinction coefficient is calculated by linearly regressing ln (FRLIGHT (z)) on depth z where the intercept is not constrained. FRLIGHT(z) = LIGHT(z) or DECK(z) where LIGHT(z) is light measured at depth z and DECK(z) is light measured on deck (above water) at the same time. For open water light profiles, the surface light measurement (depth z = 0) is excluded from the regression. For winter light profiles taken beneath the ice, the first light data are taken at the bottom of the ice cover and are included in the regression. The depth of uppermost light value is equal to the depth of the ice adjusted by the water level in the sample hole, i.e., the depth below the surface of the water. The water level can be at, above or below the surface of the ice. If the water level was not recorded, it is assumed to be 0.0 and the calculated light extinction coefficient is flagged. If ice thickness was not recorded, a light extinction coefficient is not calculated. For light data collected prior to March, 2007, light values less than 3.0 (micromolesPerMeterSquaredPerSec) are excluded. For light data collected starting in March 2007, light values less than 1.0 (micromolesPerMeterSquaredPerSec) are excluded. Except for bog lakes before August 1989, a light extinction coefficient is not calculated if there are less than three FRLIGHT values to be regressed. For bog lakes before August 1989, a light extinction coefficient is calculated if there are least two FRLIGHT values to be regressed. In these cases, the light extinction coefficient is flagged as non-standard. FRLIGHT values should be monotonically decreasing with depth. For light profiles where this is not true, a light extinction coefficient is not calculated. For samples for which light data at depth are present, but the corresponding deck light are missing, a light extinction coefficient is calculated by regressing ln (LIGHT (z)) on depth z. Note that if actual deck light had remained constant during the recording of the light profile, the resulting light extinction coefficient is the same as from regressing ln(FRLIGHT(z)). In these cases, the light extinction coefficient is flagged as non-standard.
Short Name
NTLPH08
Version Number
16

North Temperate Lakes LTER: Lake Levels 1981 - current

Abstract
Lake level is measured at the shoreline using a twice-annually calibrated staff gauge for the seven primary lakes in the Trout Lake area (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes and unnamed lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog]). Values presented in the database represent the water height in meters above sea level. Sampling Frequency: fortnightly during ice-free season with the exception of 2020, in which sampling was monthly. Number of sites: 7
Dataset ID
30
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
methods described in abstract
Short Name
NTLPH02
Version Number
26

North Temperate Lakes LTER: Snow and Ice Depth 1982 - current

Abstract
Snow and ice depth are measured during the winter months on the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Fish, Mendota, Monona and Wingra). Sampling Frequency: every 6 weeks during ice-covered season in the north and typically once during the winter in the south Number of sites: 11
Dataset ID
34
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Number of measurements per sites are given in table.
Short Name
NTLPH06
Version Number
32

North Temperate Lakes LTER: Ice Duration - Trout Lake Area 1981 - current

Abstract
Data include day of freeze-up and thaw dates of seven northern primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, unnamed 27-02 [Crystal Bog] and 12-15 [Trout Bog]) as well as Little Rock Lake. Observations are made approximately every other day during times of freeze and thaw. A lake is considered ice covered when the sampling station (the deepest part of the lake) is ice covered. The lake is considered thawed when it is possible to drive a boat from the boat landing to the sampling station without encountering ice. Sampling Frequency: annually Number of sites: 8
Dataset ID
32
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
methods are described in abstract
Short Name
NTLPH04
Version Number
28
Subscribe to NTL Core Datasets