US Long-Term Ecological Research Network

Application of eDNA as a tool for assessing fish population abundance, Northern Wisconsin, US, 2017 - 2018

Abstract
Environmental DNA concentrations, WDNR/GLIFWC mark-recapture population estimates, and
abiotic lake data on 24 lakes in Wisconsin's Ceded Territory used to evaluate the
relationship between walleye abundance and environmental DNA density and its application as
a fisheries management tool. <br/>
Core Areas
Dataset ID
383
Date Range
-
Methods
Each lake was sampled in nine locations. Each sample received four qPCR replicates.
Each lake was accompanied by a field (FLD), filter (FIL), and qPCR no template control
(NTC) blank. Lakes with eDNA samples extracted together in a batch share the extraction
(EXT) blank. Lakes listed without extraction blanks take the previous lake's extraction
blank in the order listed in the data. <br/> Each lake was sampled in nine locations. Each sample received four qPCR replicates.
Each lake was accompanied by a field (FLD), filter (FIL), and qPCR no template control
(NTC) blank. Lakes with eDNA samples extracted together in a batch share the extraction
(EXT) blank. Lakes listed without extraction blanks take the previous lake's extraction
blank in the order listed in the data. <br/> Each lake was sampled in nine locations. Each sample received four qPCR replicates.
Each lake was accompanied by a field (FLD), filter (FIL), and qPCR no template control
(NTC) blank. Lakes with eDNA samples extracted together in a batch share the extraction
(EXT) blank. Lakes listed without extraction blanks take the previous lake's extraction
blank in the order listed in the data. <br/>
NTL Themes
Version Number
1

North Temperate Lakes LTER: Trout Lake Spiny Water Flea 2014 - present

Abstract
Beginning in 2014, 30 meter vertical tows with a special zooplankton net were collected in Trout Lake specifically for the invasive Bythotrephes longimanus (spiny water flea). The net has a 400 micrometer mesh with a 0.5 meter diameter opening. Individuals are simply counted, and density is determined to be the number of individuals divided by the total water volume of each tow.
Additional Information
Related data set: North Temperate Lakes LTER: Zooplankton - Trout Lake Area 1992 - current (37)
Core Areas
Dataset ID
389
Date Range
-
Maintenance
on-going
Methods
Two 30-meter vertical tows (0.5m diameter, 400um mesh net) are collected at the deepest part of Trout Lake each time the lake is visited for routine LTER sampling during open water. On occasion, tows are collected on additional dates. Samples are visually scanned in their entirety for number of Bythotrephes present. The samples are not preserved or archived.

Publication Date
Version Number
2

North Temperate Lakes LTER Regional Survey Zooplankton 2015 - current

Abstract
The Northern Highlands Lake District (NHLD) is one of the few regions in the world with periodic comprehensive water chemistry data from hundreds of lakes spanning almost a century. Birge and Juday directed the first comprehensive assessment of water chemistry in the NHLD, sampling more than 600 lakes in the 1920s and 30s. These surveys have been repeated by various agencies and we now have data from the 1920s (UW), 1960s (WDNR), 1970s (EPA), 1980s (EPA), 1990s (EPA), and 2000s (NTL). The 28 lakes sampled as part of the Regional Lake Survey have been sampled by at least four of these regional surveys including the 1920s Birge and Juday sampling efforts. These 28 lakes were selected to represent a gradient of landscape position and shoreline development, both of which are important factors influencing social and ecological dynamics of lakes in the NHLD. This long-term regional dataset will lead to a greater understanding of whether and how large-scale drivers such as climate change and variability, lakeshore residential development, introductions of invasive species, or forest management have altered regional water chemistry. Zooplankton samples were taken at approximately the deepest part of each lake, via a vertical tow with a Wisconsin net. Count of individuals and presence absence data for all lakes in the study region are provided here.
Contact
Core Areas
Dataset ID
381
Date Range
-
Maintenance
ongoing
Methods
One zooplankton sample was collected in June 2015 at the deepest part of each lake, via vertical tow with a Wisconsin net (20cm diameter, 80um mesh). Contents of the net were preserved in the field with cold 95% ethanol. Subsamples of each vertical tow sample were counted for zooplankton species, using enough volume to count at least 300 individuals. A larger volume was then visually scanned to look for presence of additional species not seen in the count volume, until at least 2000 individuals had been seen.

Version Number
1

Wisconsin creel dataset as well as predictor variables for lakes from 1990 to 2017 to estimate statewide recreational fisheries harvest

Abstract
Recreational fisheries have high economic worth, valued at $190B globally. An important, but underappreciated, secondary value of recreational catch is its role as a source of food. This contribution is poorly understood due to difficulty in estimating recreational harvest at spatial scales beyond an individual system, as traditionally estimated from angler creel surveys. Here, we address this gap using a 28-year creel survey of ~300 Wisconsin inland lakes. We develop a statistical model of recreational harvest for individual lakes and then scale-up to unsurveyed lakes (3769 lakes; 73% of statewide lake surface area) to generate a statewide estimate of recreational lake harvest of ~4200 t and an estimated annual angler consumption rate of ~3 kg, nearly double estimated United States per capita freshwater fish consumption. Recreational fishing harvest makes significant contributions to human diets, is critical for discussions on food security, and the multiple ecosystem services of freshwater systems.
Contact
Core Areas
Dataset ID
379
Date Range
-
Maintenance
completed
Methods
The state of Wisconsin is comprised of about 15,000 inland lakes ranging from 0.5 to 53,394 ha (WDNR 2009). Most lakes occur in the northern and eastern part of the state as a result of glaciation. about 3,620 lakes are greater than 20 ha and together comprise about 93% of the state's inland lake surface area (Wisconsin Department of Natural Resources 2009). Wisconsin lakes constitute a wide range of physical and biological characteristics. Wisconsin inland lakes support valuable recreational fisheries for a variety of species, including Walleye (Sander vitreus), Northern Pike (Esox lucius), Muskellunge (Esox masquinongy), Yellow Perch (Perca flavescens), Largemouth Bass (Micropterus salmoides), Smallmouth Bass (Micropterus dolomieu), Lake Sturgeon (Acipenser fulvescens), and a variety of sunfish species (Lepomis spp.).
Version Number
2

North Temperate Lakes LTER Zooplankton conversion formulas length to biomass

Abstract
Formulas for calculating zooplankton biomass based on measured length for species encountered in NTL's northern lakes. Formulas are either based on literature reports or measurements in particular research lakes.
Core Areas
Dataset ID
376
LTER Keywords
Maintenance
completed
Methods
formulas are based on data in literature or were determined in samples from research lakes:

Culver D.A. et.al. 1985. Can. J. Fish. Aquat. Sci. Vol 42, 1380-1390.
Biomass of freshwater crustacean zooplankton from length-weight regressions.

Downing, John A. and Frank H. rigler. 1984.
A manual on methods for the assessment of secondary productivity in fresh waters. Second edition.

Dumont, H.J., I. Van de Velde and S. Dumont. Ref??
The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters.

Hawkins, Bethany E. and M.S. Evans. 1979. J.Great Lakes Res. 5(3-4):256-263
Seasonal cycles of zooplankton biomass in southeastern Lake Michigan

Lawrence, S.G., D.F. Malley, W.J. Findlay, M.A. MacIver and I.L. Delbaere. 1987. Can J. Fish. Aquat. Sci. 44: 264-274.
Methods for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape.

Pace M.L. and J.D. Orcutt. 1981. Limnol. Oceanogr. 26(5), 822-830.
The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community.

Yan N.D. and G.L. Mackie. 1987. Can. J. Fish. Aquat. Sci. Vol 44, 382-389.
Improved estimation of the dry weight of Holopedium gibberum using clutch size, a body fat index, and lake water total phosphorus concentration.

Ruttner-Kolisko A. 1977. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8, 71-76.
Suggestions for biomass calculations of plankton rotifers.
Version Number
1

Little Rock Lake Experiment at North Temperate Lakes LTER: Zooplankton length 1988 - 1998

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. Zooplankton samples are collected from the treatment and reference basins of Little Rock Lake at at two to nine depths using a 30L Schindler Patalas trap (53um mesh). Zooplankton samples are preserved in buffered formalin and archived. Data are summed over sex and stage and integrated volumetrically over the water column to provide a lake-wide estimate of average length of organisms for each species.
Core Areas
Dataset ID
375
Date Range
-
Maintenance
completed
Methods
We collect zooplankton samples at the deepest part of the lake using two different gear types. We take one vertical tow with a Wisconsin Net (80um mesh), and a series of Schindler Patalas (53um mesh) samples spanning the water column. All samples are preserved in cold 95percent EtOH.
After collection we combine subsamples of the individual Schindler Patalas trap samples to create one hypsometrically pooled sample for each lakeordate. The individual depth samples are discarded after pooling except from one August sampling date per year. The Hypsometrically Pooled sample and the Wisconsin Net sample are archived in the UW Zoology museum.
We count zooplankton in one or two subsamples, each representing 1.8L of lake water, of the hypsometrically pooled samples to calculate zooplankton abundance. We count one sample date per month from the open water season, and the February ice cover sample. We identify individuals to genus or species, take length measurements, and count eggs and embryos.
Protocol log: 1981-May1984 -- a 0.5m high, 31L Schindler Patalas trap with 80um mesh net was used. Two Wisconsin Net tows were collected. Preservative was 12percent buffered formalin.
June1984 -- changed to 53um mesh net on Schindler trap.
July1986 -- began using the 2m high, 45L Schindler Patalas trap. Changed WI Net collection to take only one tow.
2001 -- changed zooplankton preservative from 12percent buffered formalin to 95percent EtOH.
The number of sample dates per year counted varies with lake and year, from 5 datesoryear to 17 datesoryear.
1981-1983 -- pooled samples are of several types: Total Pooled (TP) were created using equal volume subsamples of the Schindler samples. Epi, Meta, Hypo pooled used equal volume subsamples from the Schindler samples collected from each of the thermal strata. Strata Pooled used equal volume subsamples from the Epi, Meta, Hypo pooled samples to create an entire lake sample. Hypsometrically Pooled (HP) is our standard, which uses subsample volumes weighted to represent the hypsometry of the lake.
Version Number
1

Production, biomass, and yield estimates for walleye populations in the Ceded Territory of Wisconsin from 1990-2017

Abstract
Recreational fisheries are valued at $190B globally and constitute the predominant use of wild fish stocks in developed countries, with inland systems contributing the dominant fraction of recreational fisheries. Although inland recreational fisheries are thought to be highly resilient and self-regulating, the rapid pace of environmental change is increasing the vulnerability of these fisheries to overharvest and collapse. We evaluate an approach for detecting hidden overharvest of inland recreational fisheries based on empirical comparisons of harvest and biomass production. Using an extensive 28-year dataset of the walleye fisheries in Northern Wisconsin, USA, we compare empirical biomass harvest (Y) and calculated production (P) and biomass (B) for 390 lake-year combinations. Overharvest occurs when harvest exceeds production in that year. Biomass and biomass turnover (P/B) both declined by about 30% and about 20% over time while biomass harvest did not change, causing overharvest to increase. Our analysis revealed 40% of populations were production-overharvested, a rate about 10x higher than current estimates based on numerical harvest used by fisheries managers. Our study highlights the need for novel approaches to evaluate and conserve inland fisheries in the face of global change.
Contact
Core Areas
Dataset ID
373
Date Range
-
LTER Keywords
Methods
All methods describing the calculation of these data can be found in Embke et al. (in review)
Version Number
1

Long-term fish size data for Wisconsin Lakes Department of Natural Resources and North Temperate Lakes LTER 1944 - 2012

Abstract
This dataset describes long-term (1944-2012) variations in individual fish total lengths from Wisconsin lakes. The dataset includes information on 1.9 million individual fish, representing 19 species. Data were collected by Wisconsin Department of Natural Resource fisheries biologists as part of routine lake fisheries assessments. Individual survey methodologies varied over space and time and are described in more detail by Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Contact
Core Areas
Creator
Dataset ID
357
Date Range
-
Maintenance
completed
Methods
Fisheries surveys of inland lakes and streams in Wisconsin have been conducted by the Wisconsin Department of Natural Resources (WDNR) professionals and its predecessor the Wisconsin Conservation Department for >70 y. Standard fyke net and boat electrofishing surveys tend to dominate the fisheries surveys and data collected. Most fyke net data on certain species (e.g., Walleye Sander vitreus and Muskellunge Esox masquinongy) originates from annual spring netting surveys following ice-out. These data are used for abundance estimates, mark and recapture surveys for estimating population sizes, and egg-take procedures for the hatcheries. Boat-mounted boom and mini-boom electrofishing surveys became increasingly common in the late 1950s and 1960s. Boat electrofishing surveys have typically been conducted during early summer months (May and June), but some electrofishing survey data are also collected in early spring as part of walleye and muskellunge mark-recapture surveys. Summer fyke netting surveys have been collected more sporadically over time, but were once more commonly used as a panfish survey methodology. Surveys were largely non-standardized. Thus, future users and statistical comparisons utilizing these data should acknowledge the non-standard nature of their collection. More in-depth description of these data can be found in Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Version Number
3

Long-term fish abundance data for Wisconsin Lakes Department of Natural Resources and North Temperate Lakes LTER 1944 - 2012

Abstract
This dataset describes long-term (1944-2012) variations in the relative abundance of fish populations representing nine species in Wisconsin lakes. Data were collected by Wisconsin Department of Natural Resource fisheries biologists as part of routine lake fisheries assessments. Individual survey methodologies varied over space and time and are described in more detail by Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Contact
Core Areas
Creator
Dataset ID
356
Date Range
-
Maintenance
completed
Methods
Fisheries surveys of inland lakes and streams in Wisconsin have been conducted by the Wisconsin Department of Natural Resources (WDNR) professionals and its predecessor the Wisconsin Conservation Department for >70 y. Standard fyke net and boat electrofishing surveys tend to dominate the fisheries surveys and data collected. Most fyke net data on certain species (e.g., Walleye Sander vitreus and Muskellunge Esox masquinongy) originates from annual spring netting surveys following ice-out. These data are used for abundance estimates, mark and recapture surveys for estimating population sizes, and egg-take procedures for the hatcheries. Boat-mounted boom and mini-boom electrofishing surveys became increasingly common in the late 1950s and 1960s. Boat electrofishing surveys have typically been conducted during early summer months (May and June), but some electrofishing survey data are also collected in early spring as part of walleye and muskellunge mark-recapture surveys. Summer fyke netting surveys have been collected more sporadically over time, but were once more commonly used as a panfish survey methodology. Surveys were largely non-standardized. Thus, future users and statistical comparisons utilizing these data should acknowledge the non-standard nature of their collection. More in-depth description of these data can be found in Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Version Number
5

Cascade Project at North Temperate Lakes LTER Core Data Zooplankton 1984 - 2016

Abstract
Zooplankton data from 1984-2016. Sampled approximately weekly with two net hauls through the water column (30 cm diameter net, 80 um mesh). There have been over eight zooplankton counters during this period, so species-level identifications (TAX, below) are not as consistent as those for some of the other datasets. Sampling Frequency: varies; Number of sites: 8
Core Areas
Dataset ID
355
Date Range
-
Maintenance
completed
Methods
Sampling:
Zooplankton were sampled approximately weekly with two net hauls through the water column (30 cm diameter net, 80 um mesh). Tows were taken at standard depths for almost all years. The standard depths are as follows: Peter, East Long, West Long, Crampton and Tuesday Lakes: 12m, Paul Lake: 8m, Ward Lake: 6m; exceptions are: for 2012 and beyond Tuesday Lake was sampled at 10m, Peter was sampled at 10m from 1984-1986, Paul was sampled at 7.5m in 1995. Samples were preserved with cold sugared formalin or Lugol's solution.
Version Number
16
Subscribe to Populations