US Long-Term Ecological Research Network

Chloride Concentrations, Conductivity, and Water Temperature Data from Upper Yahara River Watershed Tributaries in Dane County, WI: December 2019 – April 2021

Abstract
Conductivity and chloride were measured for 2 years in nine tributaries of Lake
Mendota and Lake Monona in Dane County, WI. HOBO Conductivity loggers continuously
measured absolute conductivity and water temperature every 30 minutes. Breaks in
data collection were due to a calibration period or if the loggers were out of the
water. Grab samples for chloride concentration occurred weekly or biweekly.
Conductivity and water temperature were measured with a field meter at each sampling
excursion. This data was needed for a master’s research thesis with the goal of
characterizing the spatial distribution and loading of chloride in the Upper Yahara
River Watershed.<br/>
Core Areas
Dataset ID
406
Date Range
-
Methods
Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>Field measurements and lab analyses<br/>
Version Number
1

Chloride Concentrations, Conductivity, and Water Temperature Data from Lake Mendota and Lake Monona Madison, WI: December 2019 – April 2021

Abstract
Conductivity and chloride were measured for 2 years in Lake Mendota and Lake Monona in Madison, WI. Conductivity was continuously measured (every 30 minutes) on under-ice buoys in the eplimnia (1-2m below the surface) and hypolimnia (1m off the bottom of the lake) of the lakes. Depth-discrete chloride grab samples were collected from the lakes quarterly. Profile sampling in Mendota, which is approximately 25 m deep, occurred every 5m from 0-20m and at 23.5m. Profile sampling in Monona, which is approximately 21m deep, occurred every 4m from 0-20m. This data was needed for a master’s research thesis with the goal of identifying the lakes' mixing dynamics and how salinization may impact them.<br/>
Core Areas
Dataset ID
403
Data Sources
Date Range
-
Methods
Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>Field measurements and lab analysis<br/>
Version Number
1

North Temperate Lakes LTER: Physical and Chemical Limnology of Lake Kegonsa and Lake Waubesa 1994 - current

Abstract
Physical and chemicals parameters of two Madison-area lakes in the Yahara chain not included as core NTL-LTER study lakes. Parameters include intermittently sampled water temperature, dissolved oxygen, ph, total alkalinity, chloride and sulfate. Nutrient data has been collected since 2015. Number of sites: 2.
Dataset ID
401
Date Range
-
DOI
10.6073/pasta/cc6f0e4d317d29200234c7243471472a
Maintenance
ongoing
Metadata Provider
Methods
see abstract
Short Name
NTLCH01
Version Number
1

WSC - The Influence of Legacy P on Lake Water Quality

Abstract
Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Data and code may also be found in https://github.com/SRCarpen/Yahara2070LakeModel_Fits2data.git
Core Areas
Dataset ID
384
Date Range
-
Methods
We developed a watershed modeling framework that can simulate an array of ecosystem services, including land-to-lake flows of water, sediment, and nutrients, and surface water quality (Figure 1). The framework includes process-based representation of natural and managed ecosystems (Agro- IBIS), hydrologic routing of water, sediment, and nutrients through the surface hydrologic network (THMB), and prediction of Secchi disk depth (a measure of lake transparency), summertime lake total phosphorus (TP) concentration, and the probability of hypereutrophy in each lake (Yahara Water Quality Model).
for detailed description of modeling approach please see:
Motew, M., Chen, X., Booth, E.G. et al. The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. Ecosystems 20, 1468–1482 (2017). https://doi.org/10.1007/s10021-017-0125-0
Version Number
1

North Temperate Lakes LTER Regional Survey Water Chemistry 2015 - current

Abstract
The Northern Highlands Lake District (NHLD) is one of the few regions in the world with periodic comprehensive water chemistry data from hundreds of lakes spanning almost a century. Birge and Juday directed the first comprehensive assessment of water chemistry in the NHLD, sampling more than 600 lakes in the 1920s and 30s. These surveys have been repeated by various agencies and we now have data from the 1920s (UW), 1960s (WDNR), 1970s (EPA), 1980s (EPA), 1990s (EPA), and 2000s (NTL). The 28 lakes sampled as part of the Regional Lake Survey have been sampled by at least four of these regional surveys including the 1920s Birge and Juday sampling efforts. These 28 lakes were selected to represent a gradient of landscape position and shoreline development, both of which are important factors influencing social and ecological dynamics of lakes in the NHLD. This long-term regional dataset will lead to a greater understanding of whether and how large-scale drivers such as climate change and variability, lakeshore residential development, introductions of invasive species, or forest management have altered regional water chemistry. The regional lakes survey in 2015 followed the standard LTER protocol for standard water chemistry and biology. Samples were taken as close to solar noon as possible. Seven lakes had replicates performed, which were chosen at random.
Contact
Dataset ID
380
Date Range
-
Maintenance
ongoing
Methods
Inorganic and organic carbon
Inorganic carbon is analyzed by phosphoric acid addition on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.
Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.
Version Number
2

Cascade Project at North Temperate Lakes LTER Core Data Nutrients 1991 - 2016

Abstract
Physical and chemical variables are measured at one central station near the deepest point of each lake. In most cases these measurements are made in the morning (0800 to 0900). Vertical profiles are taken at varied depth intervals. Chemical measurements are sometimes made in a pooled mixed layer sample (PML); sometimes in the epilimnion, metalimnion, and hypolimnion; and sometimes in vertical profiles. In the latter case, depths for sampling usually correspond to the surface plus depths of 50percent, 25percent, 10percent, 5percent and 1percent of surface irradiance. The 1991-1999 chemistry data was obtained from the Lachat auto-analyzer. Like the process data, there are up to seven samples per sampling date due to Van Dorn collections across a depth interval according to percent irradiance. Voichick and LeBouton (1994) describe the autoanalyzer procedures in detail. Nutrient samples were sent to the Cary Institute of Ecosystem Studies for analysis beginning in 2000. The Kjeldahl method for measuring nitrogen is not used at IES, and so measurements reported from 2000 onwards are Total Nitrogen.
Core Areas
Dataset ID
351
Date Range
-
Methods
Methods for 1984-1990 were described by Carpenter and Kitchell (1993) and methods for 1991-1997 were described by Carpenter et al. (2001).
Version Number
14

Saint Louis River Estuary Water Chemistry, Wisconsin, Minnesota, USA 2012 - 2013

Abstract
These data pertain to water and sediments collected from the Saint Louis River Estuary (SLRE) and its nearby water sources by Luke Loken and collaborators for his Masters thesis and additional publications. In brief, we sampled SLRE surface waters and sediments for a variety of physical, chemical, and biological attributes. Ten estuary stations were sampled approximately monthly from April 2012 through September 2013. On four of the sampling campaigns, water was collected from an additional 20 sites. Sites were selected to represent a gradient from the Saint Louis River to Lake Superior and included several tributaries that drain directly into the estuary. This design aimed to understand the spatial and temporal mixing pattern of the estuary as it receives water from several rivers, 2 waste water treatment plant, and Lake Superior. We sampled the estuary to assess the magnitude and timing of source water contributions to the estuary and establish a baseline of chemical and physical measurements to aid in future limnological research. Additionally, we performed nitrogen and carbon cycling rate experiments to determine the estuary-wide influence on nitrate, ammonium, and dissolved organic carbon. This included 8 sediment denitrification, 1 nitrification, and 2 breakdown dissolved organic carbon (BDOD) surveys. This work was funded by the Minnesota and Wisconsin Sea Grant and in coordination with the establishment of the Lake Superior National Estuary Research Reserve (LSNERR).
Contact
Dataset ID
322
Date Range
-
DOI
10.6073/pasta/08fdc0fb8528e37dd7ef6d6ad2b77f99
Maintenance
completed
Metadata Provider
Methods
We collected water samples from 10 estuary stations to represent a gradient from river to lake on 13 dates between April 2012 and September 2013. Stations 1-5 represented upper estuary sites, while stations 6-10 were lower. Stations were situated near the thalweg, but were shifted laterally to avoid traffic within the shipping channel. Sampling occurred approximately monthly during the open water season when sites were accessed by boat, and once during winter ice cover when a subset of sites were visited on foot. In addition to the core 10 stations, we sampled an additional 20 sites, four times over the two-year study during a high flow and baseflow period. These sites include 7 end members (Saint Louis River, Nemadji River, Bluff Creek, Kinsbury Creek, Pokegama River, and Lake Superior) and an additional 15 in-estuary sites (i.e., stations 16-30). Additional sites were occasionally visited and geographic locations to all stations are provided in SLRESitesTable.Physical LimnologyWe used a YSI EXO2 or 6-Series sonde (Yellow Springs, OH) to measure temperature, specific conductivity, dissolved oxygen, pH, turbidity, and algae fluorescence. Briefly, the sonde was lowered to appr. 0.5 m depth and allowed to stabilize. The sonde was calibrated in the lab that morning according to Lake Superior National Estuary Research Reserve (LSNERR) protocols.Light extinction was determined by lowering a photosynthetically active radiation (PAR) sensor (Licor model 192 or 193) attached to a light meter (Licor model 250A) through the water column. The sensor was allowed to stabilize at 0.25 m depth intervals. We linearly regressed the natural log of the measured light intensity against depth. The slope of this regression is the negative light extinction coefficient (k). Briefly k values closer to zero indicate clearer waters that transit more light.Water ChemistrySurface water from each station was collected into an HDPE carboy and processed in the lab within 10 h of collection. We processed samples in the lab (instead of on the boat) to expedite sample collection so that all stations could be visited within a single day (or within 2 days for spatial intensive surveys). Integrated water samples were taken from 0-2 m using a peristaltic pump or an integrated water sampler and stored in a cooler to maintain ambient temperature. Samples for dissolved solute analysis were filtered through a 0.45 microm Geotech capsule filter. All samples were refrigerated, frozen, or acidified (dependent on the analysis in question) within 12 h of collection. See meta data for SLREWaterChemTable for specifics regarding lab responsible for analyses.Samples for major cations (Calcium (Ca), Iron (Fe), Potassium (K), Sodium (Na), Magnesium (Mg), and Manganese (Mn)) were filtered upon collection into 60 mL acid-washed HDPE bottles, acidified to 1 percent ultrapure hydrochloric acid (HCl) and stored at room temperature until analysis (within 6 months). Cations were analyzed simultaneously on an optical inductively-coupled plasma emission on a Perkin-Elmer model 4300 DV ICP spectrophotometer according to methods outlined at the North Temperate Lakes- Long Term Ecological Research site.Samples for major anions (Chloride (Cl) and sulfate (SO4)) were filtered into a new 20 mL HDPE scintillation vials and stored at 4degree C until analysis (within 3 months). Anion samples were analyzed simultaneously by Ion Chromatography, using a hydroxide eluent determined by a Dionex model ICS 2100 using an electro-chemical suppressor.Samples for dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were analyzed on a Shimadzu TOC analyzer. DOC and DIC samples were filtered into acid-washed 24 mL glass vials and capped with septa, leaving no headspace. DOC samples were acidified with 100 microL of 2 M HCL upon collection. Both DOC and DIC were stored at 4 degreeC, and then analyzed within three weeks at the University of Minnesota-Twin Cities. Both DOC and DIC were collected in duplicate and reported as means.Samples for UV absorbance were filtered into ashed 40 mL glass amber vials and stored at 4degree C until analysis (within 2 months). We measured UV absorbance at 254 nm (Abs254) using a spectrophotometer (Cary 50 UV-Vis Spectrophotometer, Varian, Palo Alto, CA). Specific UV absorbance at 254 nm (SUVA254) was then calculated by dividing Abs254 by the DOC concentration of the water sample.Nitrate plus nitrite nitrogen (referred to as NO3-N), ammonium plus ammonia nitrogen (referred to as NH4-N), and soluble reactive phosphorus (SRP) were analyzed colormetrically. Samples were filtered into new 20 mL plastic scintillation vials and frozen within 8 h of collection. Samples were thawed within 4 months and were analyzed in parallel by automated colorimetric spectrophotometry, using an Astoria-Pacific Astoria II segmented flow autoanalyzer. NO3-N was determined using the automated cadmium reduction method with absorption monitored at lambda=520 nm. NH4-N was determined using the Berthelot Reaction, producing a blue colored indophenol compound, where the absorption was monitored at lambda=660 nm. SRP was determined by forming a phosphoantimonymoledbeun complex and was measured as lambda=880nm.Samples for total and dissolved nitrogen and phosphorus analysis were collected together and in-line filtered (dissolved nitrogen and phosphorus only) into 60 ml LDPE bottles and acidified to a 1 percent HCl. Once acidified, the samples were stored at room temperature until analysis, which occurred within one year. The samples were first prepared for analysis by adding a NaOH&ndash;Persulfate digestion reagent and heated for 1 h at 120 degreeC and 18-20 pounds per square inch (psi) in an autoclave. The samples were analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method where the absorption is monitored at 520 nm; total phosphorus is determined using ascorbic acid-molybdate method where the absorption is monitored at 880 nm. Both are described in LTER standard methods.We determined dual isotopic natural abundance of nitrate (NO3) and water (H2O) from a subset of collected water samples. Samples for delta18O-NO3 and delta15N-NO3 were filtered into acid-washed 60 mL HDPE bottles and frozen within 8 h of collection. Nitrate isotope samples were analyzed using the denitrifier method at the Colorado Plateau Stable Isotope Laboratory. delta18O-NO3 and delta15N-NO3 isotopes were reported as the per mil (per-mille) deviation from Vienna Standard Mean Ocean Water (VSMOW) and air standards, respectively. Samples for isotopes of water (delta18O-H2O and delta2H-H2O) were collected without headspace in glass vials and measured using isotope ratio infrared spectroscopy at the University of Minnesota &ndash; Biometeorology lab. Six replicates were run per sample, and delta18O-H2O and delta2H-H2O were determined relative to VSMOW.Chlorophyll ALaboratory analysis of chlorophyll A (ChlA) uses the Turner Designs model 10-AU fluorometer, following improvements described in Welschmeyer (1994). In this method, ChlA in 90percent acetone is separated from other pigments by the use of specialized optical filters. ChlA samples were preserved within 24 h of water sampling, by collecting filtrand on a 0.2 microm cellulose nitrate filter, placing the filter in a 15 mL falcon tube, and freezing it. Between 200 and 1000 mL of sample was based through the filter until the filter was moderately stained and filtering speed slowed. Within three weeks of collection, filters were thawed, and 12.0 mL of acetone was added to tube, which was allowed to steep for 18-24 h in the dark at 4 degreeC. After steeping, samples were centrifuged at high speed in Sorvall GLC-2B centrifuge for 20 min and warmed to room temperature. Sample fluorescence was then measured on a calibrated Turner Designs model 10-AU fluorometer (excitation 436 nm, emission 680 nm). Sample fluorescence was then converted to a water column concentration by multiplying by the extract volume (i.e., 12 mL) and divided by the volume of water that passed through the filter (i.e., 200-1000 mL).ParticulatesSimilar to ChlA, particulate carbon, nitrogen, and phosphorus samples were collected by passing 200-1000 mL of water through a pre-combusted 0.7 glass fiber filter (GFF) and analyzing the filtrand. Filters were frozen immediately after filtration, and then dried at 60 degreeC for at least 48 hours. Particulate carbon and nitrogen was measured using a Thermo Fisher Flash 2000 elemental analyzer. Particulate phosphorus was determined from a separate filter. Filters were digested in 5 mL potassium persulfate and phosphorus was analyzed spectrophotometrically using the ascorbic acid-molybdate method (Menzel and Corwin 1965).NitrificationWater column nitrification rates were determined on 30 July 2013 for a subset of the water chemistry sampling stations (n = 15) that represented the full spatial extent and previously observed NH4-N range of the estuary. Water from each station was transferred to 333 mL polycarbonate bottles within 10 h of collection and spiked with 15NH4Cl to achieve a concentration of 0.03 micromol 15NH4 L-1. Samples were incubated at ambient temperature (20 degreeC ) in a dark cooler for 20 h. Pre- and post-incubation samples were filtered through 0.45 microm filters and analyzed for NO3-N, NH4-N and delta15N-NO3. Nitrification rates were determined based on changes in NO3-N, NH4-N, and delta15N-NO3 according to methods outlined in Small et al. (2013). Analysis for each station was performed in duplicate and reported as the mean.SedimentsSediments were collected on 8 of the water chemistry survey dates from stations 2-9 to determine spatial and temporal patterns of denitrification and sediment organic content. We also collected a single sediment sample from additional lower (n = 17) and upper (n = 6) stations on 19 June 2012 and 24 June 2013, respectively, to increase the spatial extent of our survey. In total, 56 and 42 individual sediment collections were made in 2012 and 2013, respectively. Sediments were collected from the upper 5-20 cm of the benthic zone using an Ekman dredge. At least 500 mL of benthic material was transferred to 1-L widemouth Nalgene containers and used in denitrification rate experiments. Fifteen mL of the uppermost sediment layer was transferred into sterile 100 mL disposable plastic screw-top containers to be analyzed for sediment composition content. Sediments were stored in a cooler while on the boat and transferred to 4 degreeC within 6 h.To assess the effects of sediment composition on denitrification, dry:wet ratios, bulk density, particle size distributions, loss-on-ignition (LOI), percent carbon, and percent nitrogen were determined from the 15 mL sediment subsamples. Sediments were weighed before and after drying at 60 degreeC for at least 48 h to determine dry:wet ratios and bulk density. Sediment particle size composition was determined optically using a Coulter LS-10 particle size analyzer and sizes were binned into percent clay (0-2.0 microm), silt (2.0-63.0 microm) and sand (63-2000 microm) (Scheldrick and Wang 1993). LOI was determined by the loss in mass of 2.0plus/-0.2 g dried homogenized sediment combusted at 550 degree Celsius for 4 h. Sediments were ground and analyzed for percent carbon and nitrogen using a Thermo Fisher Flash 2000 elemental analyzer.Sediment denitrificationWe determined actual (DeN) and potential (DEA) sediment denitrification rates in the laboratory using the acetylene block technique modified from Groffman et al. (1999) within 48 h of collection. We incubated 40&plusmn;2 g of wet sediment saturated with 40&plusmn;0.1 mL of estuary water in 125 mL glass Wheaton bottles at 20 degreeC. DEA incubations were spiked with glucose and NO3-N to a final concentration of 40 mg C L-1 and 100 mg N L-1, respectively; DeN incubations were given no amendments. All incubations were augmented with 10 mg L-1 chloramphenicol to inhibit microbial proliferation (Smith and Tiedje 1979). Samples were capped with rubber septa, flushed with helium (He) for 5 min to remove oxygen (O2), and injected with 10 mL acetylene. We allowed the acetylene 30 min to fully diffuse into the sediment slurry before taking the initial headspace sample (T0). Samples were placed on a shaker table in the dark for 2.6 h then sampled the final headspace (T1). The change in headspace N2O partial pressures (pN2Ofinal - pN2Oinitial) was used to determine the denitrification rate using the Bunsen correction and the ideal gas law. For both T0 and T1 samples, 10 mL of headspace was withdrawn from incubation bottles and injected into a He-flushed 12 mL gas-tight glass vials (Exetainers) sealed with rubber septa. We determined pN2O and pO2 in parallel on a gas chromatograph equipped with an electron capture detector (ECD) and thermal conductivity detector (TCD) using methods outlined in Spokas et al. (2005). Gas samples with O2 concentrations greater than 5percent were removed from analysis due to potential gas leakage. Denitrification rates were standardized to sediment dry mass. Samples collected on or before 6 June 2013 were incubated in triplicate; samples collected after were incubated in duplicate.Denitrification controls were further investigated by amending sediments with combinations of NO3-N and two types of organic carbon: glucose and natural organic matter (NOM; supplied by the International Humic Substance Society). On two dates in 2013, we incubated sediments from five of our core stations that spanned a gradient of sediment organic content with the following amendments: NO3-N only, NO3-N and glucose (DEA), NO3-N and NOM, glucose only, NOM only, and no amendments (DeN). The two carbon treatments were intended to test for possible effects of carbon quality, with NOM representing a recalcitrant, humic-rich carbon source similar to allochthonous materials in the SLRE to contrast the labile glucose treatment. Both carbon sources were amended to 40 mg C L-1, and NO3-N was amended to 100 mg N L-1. Sediments were incubated in parallel (see above).Breakdown Dissolved Organic Carbon (bDOC)Breakdown of DOC (bDOC) was determined from core stations (1-10) from water collected on 23 April and 30 July 2012. Briefly, 250 mL of estuary water was filtered through a 0.45 microM Geotech flow-through filter using a peristaltic pump into sealable glass jars. 25 mL of 2.0 microm filtered water from a common estuary source was added to the filtered jars. DOC samples were collected after 0, 1, 2, 4 ,8, 16, and 32 d and analyzed for DOC (see above). A linear model was fit between time since inoculation and DOC concentration to determine the breakdown of DOC from water column microbes.ReferencesMeyers PA, Teranes JL. 2001. Sediment organic matter. Pages 239-269, In: Track Enviornmental Change Using Lake Sediments Vol 2 Phys Geochemical Methods. Dordrecht: Kluwer Academic Publishers.Groffman, Peter M, Holland EA, Myrold DD, Robertson GP, Zou X. 1999. Denitirification. Pages 272-288 in Standand Soil Methods Long-Term Ecological Research, Oxford University, New York.Menzel DW, Corwin N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol and Oceanogr 10: 280&ndash;282.Scheldrick HB, Wang C. 1993. Particle size distribution. Pages 499-512 In: Soil Sampling and Methods of Analysis. Boca Raton: CRC Press LLC.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, McKay RML, Mukherjee M. 2013. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 58:276&ndash;86.Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261-267Spokas K, Wang D, Venterea R. 2005. Greenhouse gas production and emission from a forest nursery soil following fumigation with chloropicrin and methyl isothiocyanate. Soil Biol Biochem. 37:475&ndash;85.Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985-1992.&nbsp;
Version Number
17

A Global database of methane concentrations and atmospheric fluxes for streams and rivers

Abstract
This dataset, referred to as MethDB, is a collation of publicly available values of methane (CH4) concentrations and atmospheric fluxes for world streams and rivers, along with supporting information on location, geographic, physical, and chemical conditions of the study sites. The data set is composed of four linked tables, corresponding to the data sources (Papers_MethDB), the study sites (Sites_MethDB), concentrations (Concentrations_MethDB), and influx/efflux rates (Fluxes_MethDB). Information was extracted from journal articles, government reports, book chapters, and similar sources that were acquired before 15 September 2015. Concentrations and fluxes were converted to a standard unit (micromoles per liter for concentration and millimoles per square meter per day for flux) and both the author-reported and converted data are included in the database. MethDB was assembled as part of a larger synthesis effort on stream and river CH4 dynamics, and assembled data were used to identify large-scale patterns and potential drivers of fluvial CH4 and to generate an updated global-scale estimate of CH4 emissions from world rivers.
Dataset ID
321
Date Range
-
DOI
10.6073/pasta/21f5bd6642e9689baf90262f3c85ac4a
Metadata Provider
Methods
CH4 data from streams and rivers are widely scattered, as values are often included as end-member in studies focused on other processes or types of ecosystems. Thus, while we sought to be as complete as possible in compiling existing data, some sources have undoubtedly been overlooked. Sources included journal articles, book chapters, dissertations, USGS open file reports, meeting proceedings, and unpublished results provided by individual investigators. Data incorporated into MethDB were strictly limited to surface waters of rivers and streams; values for groundwater, porewater, saturated soils, lakes, reservoirs, wetlands, estuaries, and floodplains were not included. Some papers were excluded because essential supporting information was missing (e.g., units), or extracting data from complex graphs was considered to be unwise. Data sources are listed in the Notes and Comments section below.
Version Number
5375866

North Temperate Lakes LTER: Chemical Limnology of Lake Mendota: Major Ions 1940 - 1995

Abstract
Chloride, Sodium and Sulfate concentrations in Lake Mendota. 1940 - 1987 data are annual averages collected and processed by Richard Lathrop Lathrop, R. C. (1988). Chloride and sodium trends in the Yahara lakes. Bureau of Research, Wisconsin Department of Natural Resources. 1988 - 1995 data are collected by the Wisconsins DNR and are also available in Storet.
Core Areas
Dataset ID
319
Date Range
-
DOI
10.6073/pasta/6deb8490027da04e2b257cb258ffe5f3
Maintenance
completed
Metadata Provider
Methods
1940 - 1987 data are annual averages collected and processed by Richard Lathrop Lathrop, R. C. (1988). Chloride and sodium trends in the Yahara lakes. Bureau of Research, Wisconsin Department of Natural Resources. 1988 - 1995 data are collected by the Wisconsins DNR and are also available in Storet.
Version Number
17

WSC - Soil moisture, temperature, and water potential at Wibu field site

Abstract
Soil moisture, temperature, and water potential measurements for 3 locations within Wibu field site: (1) WIBU-6, which is characterized by deep (greater than6 m) groundwater and coarse soil; (2) WIBU-7, which is characterized by intermediate (2-4 m) groundwater and intermediate soil; (3) WIBU-8, which is characterized by shallow (0-3 m) groundwater and fine soil. For more information about the soil and groundwater levels, see other datasets from this field site. The Wibu field site is a commercial agricultural field, which grew corn in the 2012, 2013, and 2014 growing seasons. See Zipper and Loheide (2014) Ag. For. Met. for more information about the field site.
Core Areas
Dataset ID
316
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Soil moisture and temperature were collected using Decagon 5TM sensors at depths of 10, 35, and 65 cm at each site, and an additional deeper site (90 cm for W6, 110 cm for W7, and 125 cm for W8). Soil water potential was collected at 35 cm at each site using a Decagon MPS2 sensor. All data were collected at 15-minute resolution and stored in a Decagon EM-50G datalogger. Sensors were installed after planting (April-May) and removed prior to harvest (September-October) in 2012, 2013, and 2014. Installation was done by digging a soil pit adjacent to a planted strip and installing sensors into the undisturbed face, so that sensors were directly beneath plants.
Version Number
14
Subscribe to Inorganic Nutrients