US Long-Term Ecological Research Network

Lake snow removal experiment snow, ice, and Secchi depth, 2019-2021

Abstract
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter.<br/>
Dataset ID
419
Data Sources
Date Range
-
LTER Keywords
Methods
Snow depth was determined by averaging ten random samples taken with a meter stick.<br/>
NTL Themes
Version Number
1

Lake Mendota water temperature secchi depth snow depth ice thickness and meterological conditions 1894 - 2007

Abstract
Data for water temperature at different depth and different frequencies assembled from various sources by Dale Roberson. A table with additional parameters collected at the same time is also provided for dates when available. These parameters are weather observations, secchi depth, snow and ice depths.
Dataset ID
335
Date Range
-
Methods
Data were assembled from different collectors, names are given in metadata. Measurements were conducted by hand.
NTL Keyword
Version Number
14

Lake ice seasonality over the past 320 to 570 years

Abstract
Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.
Contact
Dataset ID
327
Date Range
-
Methods
Please see Sharma, S. et al. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Sci. Rep. 6, 25061; doi: 10.1038/srep25061 (2016).
Version Number
14

Lake Mendota at North Temperate Lakes LTER: Snow and Ice Depth 2009-2010

Abstract
Ice core data collected by Yi-Fang (Yvonne) Hsieh and collaborators for her PhD project, "Modeling Ice Cover and Water Temperature of Lake Mendota."; Part of the project was the development of a 3D hydrodynamic-ice model that simulated both temporal and spatial distributions of ice cover on Lake Mendota for the winter 2009-2010. The parameters from these ice core data were used as model inputs to run model simulations. Parameters measured include: blue ice, white ice, snow depth, and total ice. On February 13, 2009, ice cores were taken on Lake Mendota at four different stations. From January 14, 2010 through March 3, 2010 ice cores were taken on Lake Mendota at 31 different stations. In addition, ice cores were taken on other Yahara Lakes during February of 2009: Lake Kegonsa (4 stations_February 6), Lake Waubesa (4 stations_February 7), Lake Wingra (2 stations_February 8), and Lake Monona (4 stations_February 8). Only total ice measurements are reported for 2009. Included in this data set are the ice core data, and geospatial information for ice coring stations. Documentation: Hsieh, Y.-F., 2012a. Modeling ice cover and water temperature of Lake Mendota. ProQuest Dissertations and Theses. The University of Wisconsin - Madison, United States -- Wisconsin, p. 157.
Dataset ID
283
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Ice and snow sampling was conducted weekly from 14 January to 30 March, 2010 on Lake Mendota when the ice was safe to walk on. A Kovacs Mark III core drill, manufactured by Ice Coring and Drilling Service (ICDS), Space Science and Engineering Center (SSEC) UW Madison, was used to collect ice cores. Snow depth was also measured at the locations where ice cores were sampled. All measurements were made in centimeters. Blue ice can be defined as the portion of the ice core that is strictly frozen lake water. White ice can be defined as &ldquo;snow ice,&rdquo; which occurs when water rushes through cracks in the ice and soaks the overlying snow, resulting in a mixture of ice and snow that subsequently freezes. Total ice is blue ice + snow ice. Finally, snow depth was calculated as the average of 10 snow depth samples at each sampling location.
Version Number
19

North Temperate Lakes LTER: Snow and Ice Depth 1982 - current

Abstract
Snow and ice depth are measured during the winter months on the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Fish, Mendota, Monona and Wingra). 10 snow depth measurements are taken in a circle around the sampling location and averaged to single measurement. Sampling Frequency: every 6 weeks during ice-covered season in the north and typically once during the winter in the south. Number of sites: 11.
Dataset ID
34
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Methods are described in the abstract.
Short Name
NTLPH06
Version Number
34

North Temperate Lakes LTER: Ice Duration - Trout Lake Area 1981 - current

Abstract
Data includes day of freeze-up and thaw dates of seven northern primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, unnamed 27-02 [Crystal Bog] and 12-15 [Trout Bog]) as well as historic data from Little Rock Lake. Observations are made approximately every other day during times of freeze and thaw. A lake is considered ice covered when the sampling station (the deepest part of the lake) is ice covered. The lake is considered thawed when it is possible to drive a boat from the boat landing to the sampling station without encountering ice. Sampling Frequency: annually. Number of sites: 8.
Dataset ID
32
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Methods are described in abstract.
Short Name
NTLPH04
Version Number
30

North Temperate Lakes LTER: Ice Duration - Madison Lakes Area 1853 - current

Abstract
Data include dates of freeze-up, thaw, and ice duration of three primary lakes in the Madison area (Lake Mendota, Lake Monona, and Lake Wingra). Data are obtained from the State Climatologist. For Monona and Wingra, the freeze date (ice on) is defined as the first date on which the water body is observed to be completely ice covered, and the breakup date (ice off) is the date of the last breakup observed before the open water phase. Ice duration is the number of days that a water body is completely covered with ice and excludes any period during which the lake thawed in mid-winter before freezing again. For Mendota, duration is calculated in the same manner, but ice on and ice off dates are assigned as follows: The lake is deemed frozen if it has solid ice from Picnic Point to Maple Bluff and total ice cover is greater than 50 %. The lake is deemed open if it is ice-free from Picnic Point to Maple Bluff and total ice cover is less than 50%. Sampling Frequency: annually. Number of sites: 3.
Dataset ID
33
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Methods are described in abstract.
Short Name
NTLPH05
Version Number
37

Little Rock Lake Experiment at North Temperate Lakes LTER: Snow and Ice Depth 1984 - 2000

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. Snow and ice depth are measured during the winter months on the reference and treatment basins of Little Rock Lake. Sampling Frequency: varies - Number of sites: 4
Dataset ID
249
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
Snow and ice depth are measured during the winter months on the reference and treatment basins of Little Rock Lake.
Short Name
LRWINTER
Version Number
4
Subscribe to ice and snow