US Long-Term Ecological Research Network

Cascade Project at North Temperate Lakes LTER Phosphorus, Chlorophyll, DOC, Color, and pH for Twenty UNDERC Lakes 1995 - 2003

Abstract
Data on total phosphorous, chlorophyll a, dissolved organic carbon, water color, and pH for a set of lakes located at the University of Notre Dame Environmental Research Center (UNDERC). Surface water samples were collected monthly from May through August either from shore with a telescoping pole or from a boat. Twenty lakes were sampled from 1995-2000. Fifteen of these lakes were sampled from 2001-2003.
Contact
Dataset ID
361
Date Range
-
Methods
Methods are described in Pace and Cole 2002 (https://doi.org/10.4319/lo.2002.47.2.0333). Surface water samples for the analysis of pH, dissolved organic carbon (DOC), chlorophyll a , total phosphorus color were collected by dipping a sample bottle. The total phosphorus (TP) samples were stored in a separate acid-washed bottle. Samples were collected monthly from May through August from a set of 20 lakes for the years 1995-2000. A subset of fifteen lakes were sampled in the same way from 2001-2003. Samples were stored in a cooler and returned the lab for processing within a few hours.
Version Number
3

Cascade Project at North Temperate Lakes LTER Core Data Physical and Chemical Limnology 1984 - 2016

Abstract
Physical and chemical variables are measured at one central station near the deepest point of each lake. In most cases these measurements are made in the morning (0800 to 0900). Vertical profiles are taken at varied depth intervals. Chemical measurements are sometimes made in a pooled mixed layer sample (PML); sometimes in the epilimnion, metalimnion, and hypolimnion; and sometimes in vertical profiles. In the latter case, depths for sampling usually correspond to the surface plus depths of 50percent, 25percent, 10percent, 5percent and 1percent of surface irradiance.
Dataset ID
352
Date Range
-
Methods
Methods for 1984-1990 were described by Carpenter and Kitchell (1993) and methods for 1991-1997 were described by Carpenter et al. (2001).
Version Number
14

Cascade Project at North Temperate Lakes LTER Core Data Nutrients 1991 - 2016

Abstract
Physical and chemical variables are measured at one central station near the deepest point of each lake. In most cases these measurements are made in the morning (0800 to 0900). Vertical profiles are taken at varied depth intervals. Chemical measurements are sometimes made in a pooled mixed layer sample (PML); sometimes in the epilimnion, metalimnion, and hypolimnion; and sometimes in vertical profiles. In the latter case, depths for sampling usually correspond to the surface plus depths of 50percent, 25percent, 10percent, 5percent and 1percent of surface irradiance. The 1991-1999 chemistry data was obtained from the Lachat auto-analyzer. Like the process data, there are up to seven samples per sampling date due to Van Dorn collections across a depth interval according to percent irradiance. Voichick and LeBouton (1994) describe the autoanalyzer procedures in detail. Nutrient samples were sent to the Cary Institute of Ecosystem Studies for analysis beginning in 2000. The Kjeldahl method for measuring nitrogen is not used at IES, and so measurements reported from 2000 onwards are Total Nitrogen.
Core Areas
Dataset ID
351
Date Range
-
Methods
Methods for 1984-1990 were described by Carpenter and Kitchell (1993) and methods for 1991-1997 were described by Carpenter et al. (2001).
Version Number
14

North Temperate Lakes LTER General Lake Model Parameter Set for Lake Mendota, Summer 2016 Calibration

Abstract
The General Lake Model (GLM), an open source, one-dimensional hydrodynamic model, was used to simulate various physical, chemical, and biological variables on Lake Mendota between 15 April 2016 and 11 November 2016. GLM (v.2.1.8) was coupled to the Aquatic EcoDynamics (AED) module library via the Framework for Aquatic Biogeochemical Modeling (FABM). GLM-AED requires four major “scripts” to run the model. First, the glm2.nml file configures lake metadata, meteorological driver data, stream inflow and outflow driver data, and physical response variables. Second, the aed2.nml file configures various biogeochemical modules for the simulation of oxygen, carbon, phosphorus, and nitrogen, among others. Third, aed2_phyto_pars.nml configures all parameters pertaining to phytoplankton dynamics. And fourth, aed2_zoop_pars.nml configures all parameters pertaining to zooplankton dynamics. This dataset contains parameter descriptions and values as they were used to simulate organic carbon and greenhouse gas production on Lake Mendota in summer 2016. Meteorological data and stream files used in this calibration are also included in this dataset. Additional methods and model descriptions can be found in J.A. hart’s Masters Thesis, University of Wisconsin-Madison Center for Limnology, May 2017. Readers are referred to the GLM (Hipsey et al. 2014) and AED (Hipsey et al. 2013) science manuals for further details on model configuration.
Additional Information
completed
Contact
Dataset ID
348
Date Range
-
Methods
This study used the R packages “GLMr” (https://github.com/GLEON/GLMr) and “glmtools” (https://github.com/USGS-R/glmtools) to interact with GLM-AED from the R statistical environment.

Hourly meteorological data were obtained for 2010-2016 from the North American Land Data Assimilation System (NLDAS) and included air temperature, relative humidity, short wave radiation, long wave radiation, wind speed, rain accumulation, and snow accumulation.

Average daily stream discharge and nitrogen and phosphorus loads were obtained from the United States Geological Survey (USGS) National Water Information System (NWIS) water quality database. All streams included in this study are monitored by the USGS. This study used 2014 nutrient loading data over the simulation time period since 2016 nutrient data were not yet available. Only the Yahara River and Pheasant Branch Creek have data on daily nutrient loads; thus, Pheasant Branch nutrient concentrations were also applied to both Dorn Creek and Sixmile Creek, which contribute near equivalent volume to Lake Mendota. Since GLM-AED requires nutrient concentration rather than load, water column concentrations were back calculated using load and discharge.

Daily OC loads (POC and DOC, individually) were estimated for each individual inflow (n=4) from observed weekly measurements of OC concentration (doi: 10.6073/pasta/86094298f5a9085869518372934bf9d7)
using stream-specific linear models (Lathrop et al. 1998). The linear relationship between known log-scaled OC loads and log-scaled discharge for each individual stream was used to predict the OC load for each day in the model simulation time period. Again, water column OC concentrations were back calculated using the load and discharge.

A manual calibration routine was conducted to optimize the goodness-of-fit of various state variables in GLM-AED, especially those known to influence OC and GHG dynamics. We used visual comparison of predictions and observations, as well as a quantitative approach, to assess goodness-of-fit. We calibrated water balance and water temperature to effectively simulate lake level and stratification. We also calibrated DO, Secchi depth, TN, TP, DOC, and CH4. Finally, we calibrated phytoplankton dynamics according to four phytoplankton functional groups, recognizing that phytoplankton contribute substantially to the OC pool.

Version Number
13

Cascade project at North Temperate Lakes LTER - High-resolution spatial analysis of CASCADE lakes during experimental nutrient enrichment 2015 - 2016

Abstract
This dataset contains high-resolution spatio-temporal water quality data from two experimental lakes during a whole-ecosystem experiment. Through gradual nutrient addition, we induced a cyanobacteria bloom in an experimental lake (Peter Lake) while leaving a nearby reference lake (Paul Lake) as a control. Peter and Paul Lakes (Gogebic county, MI USA), were sampled using the FLAMe platform (Crawford et al. 2015) multiple times during the summers of 2015 and 2016. In 2015 nutrient additions to Peter Lake began on 1 June, and ceased on 29 June, Paul Lake was left unmanipulated. In 2016 no nutrients were added to either lake. Measurements were taken using a YSI EXO2 probe and a Garmin echoMap 50s. Sensor- data were collected continuously at 1 Hz and linked via timestamp to create spatially explicit data for each lake.

Crawford, J. T., L. C. Loken, N. J. Casson, C. Smith, A. G. Stone, and L. A. Winslow. 2015. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology. Environmental Science & Technology 49:442–450.
Contact
Dataset ID
343
Date Range
-
Maintenance
complete
Methods
In two consecutive years, we measured lake-wide spatial patterning of cyanobacteria using the FLAMe platform (Crawford et al. 2015). To evaluate early warning indicators of a critical transition, in the first year we induced a cyanobacteria bloom through nutrient addition in an experimental lake while using a nearby unmanipulated lake as a reference ecosystem (Pace et al. 2017). During the second year, both lakes were left unmanipulated. Proposed detection methods for early warning indicators were compared between the manipulated and reference lakes to test for their ability to accurately detect statistical signals before the cyanobacteria bloom developed.
Peter and Paul Lakes are small, oligotrophic lakes (Peter: 2.5 ha, 6 m, 19.6 m and Paul: 1.7 ha, 3.9 m, 15 m, for surface area, mean, and max depth respectively) located in the Northern Highlands Lake District in the Upper Peninsula of Michigan, USA (89°32’ W, 46°13’ N). These lakes have similar physical and chemical properties and are connected via a culvert with Paul Lake being upstream. Both lakes stratify soon after ice-off and remain stratified usually into November (for extensive lake descriptions, see Carpenter and Kitchell, 1993).
In the first year, Peter Lake was fertilized daily starting on 1 June 2015 (DOY 152) with a nutrient addition of 20 mg N m-2 d-1 and 3 mg P m-2 d-1 (molar N:P of 15:1) through the addition of H3PO4 and NH4NO3 until 29 June (day of year, DOY 180). The decision to stop nutrient additions required meeting four predefined criteria based on temporal changes in phycocyanin and chlorophyll concentrations indicative of early warning behavior of a critical transition to a persistent cyanobacteria bloom state. (Pace et al. 2017). Nutrients uniformly mix within 1-2 days after fertilization based on prior studies (Cole and Pace 1998). No nutrient additions were made to Paul Lake. In the second year (2016), neither lake received nutrient additions.
We mapped the surface water characteristics of both experimental lakes to identify changes in the spatial dynamics of cyanobacteria. In 2015, mapping occurred weekly from 4 June to 15 August (11 sample weeks). In 2016, when neither lake was fertilized, the lakes were mapped three times in early to mid-summer. In both years, mapping occurred between the hours of 07:00 to 12:00 (before the daily nutrient addition). We rotated the order that we sampled the lakes to avoid potential biases due to differences in time of day. Each individual lake sampling event was completed in approximately one hour.
The FLAMe platform maps the spatial pattern of water characteristics. A boat-mounted sampling system continuously pumps surface water from the lake to a series of sensors while geo-referencing each measurement (complete description of the FLAMe platform in Crawford et al. 2015). For this study, the FLAMe was mounted on a small flat-bottomed boat propelled by an electric motor and was outfitted with a YSI EXO2™ multi-parameter sonde (YSI, Yellow Springs, OH, USA). We focused for this study on measures of phycocyanin (a pigment unique to cyanobacteria) and temperature. Phycocyanin florescence was measured using the optical EXO™ Total Algae PC Smart Sensor. The Total Algae PC Smart Sensor was calibrated with a rhodamine solution based on the manufacturer’s recommendations. Phycocyanin concentrations are reported as ug/L; however, these concentrations should be considered as relative because we did not calibrate the sensor to actual phycocyanin nor blue-green algae concentrations. Geographic positions were measured using a Garmin echoMAP™ 50s. Sensor- data were collected continuously at 1 Hz and linked via timestamp to create spatially explicit data for each lake. Each sampling produced approximately 3500 measurements in the manipulated lake and 2000 in the reference lake. The measurements were distributed by following a gridded pattern across the entire lake surface to characterize spatial patterns over the extent of the lake.
Version Number
15

North Temperate Lakes LTER Long-term winter chemical limnology and days since ice-on for primary study lakes 1983 - 2014

Abstract
This data set integrates long-term data sets on winter nutrient chemistry with ice phenology (number of days since ice-on), focusing on the subset of measurements taken during ice cover. Parameters characterizing limnology of 5 primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, are measured at one station in the deepest part of each lake at the surface, middle, and deep (~1 meter above bottom). These parameters include nitrate-N, ammonium-N, total dissolved phosphorus, dissolved inorganic carbon, water temperature, dissolved oxygen, and pH. Water temperature and dissolved oxygen values are the zonal averages from more complete depth profiles. Sampling Frequency: every 6 weeks during ice-covered season for the northern lakes. Number of sites: 5
Dataset ID
341
Date Range
-
Maintenance
completed
Methods
This is a compilation of three data sets

North Temperate Lakes LTER: Chemical Limnology of Primary Study Lakes: Nutrients, pH and Carbon 1981 - current
https://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-chemical-limnology-primary-study-lakes-nutrients-ph-and-carbon-19

North Temperate Lakes LTER: Physical Limnology of Primary Study Lakes 1981 - current
https://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-physical-limnology-primary-study-lakes-1981-current

North Temperate Lakes LTER: Ice Duration - Trout Lake Area 1981 - current
https://lter.limnology.wisc.edu/dataset/north-temperate-lakes-lter-ice-duration-trout-lake-area-1981-current
Version Number
6

Spatial variability in water chemistry of four Wisconsin aquatic ecosystems - High speed limnology Environmental Science and Technology datasets

Abstract
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. We developed a new sensor platform to continuously samples surface water at a range of speeds (0 to > 45 km hr-1) resulting in high-density, meso-scale spatial data. Here, we archive data associated with an Environmental Science and Technology publication. Data include a single spatial survey of the following aquatic ecosystems: Lake Mendota, Allequash Creek, Pool 8 of the Upper Mississippi River, and Trout Bog. Data have been provided in three formats (raw, hydraulic-corrected, and tau-corrected).
Dataset ID
337
Date Range
-
Maintenance
completed
Methods
The Fast Limnology Automated Measurement (FLAMe) platform is a novel flow-through system designed to sample inland waters at both low- (0 to appr. 10 km hr-1) and high-speeds (10 to greater than 45 km hr-1) described in Crawford et al. (2015). The FLAMe consists of three components: an intake manifold that attaches to the stern of a boat; a sensor and control box that contains hoses, valves, a circulation pump and sensor cradles; and a battery bank to power the electrical components. The boat-mounted intake manifold serves multiple purposes. First, sensors are mounted inside the boat, protecting them from potential damage. Second, the intake system creates a constant, bubble-free water flow, thus preventing any issues for optical sensors due to cavitation. Finally, to analyze dissolved gases, a constant water source is needed on board. Water flow via both the slow- and high-speed intakes is regulated by the onboard impeller pump, allowing for seamless switching between slow- and high-speed operations. Any number of sensors could be integrated into the platform with simple modifications, and can be combined with common limnological instruments such as acoustic depth-finders. In our example applications we used a YSI EXO2 multiparameter sonde (EXO2; Yellow Springs, OH, USA), and a Satlantic SUNA V2 optical nitrate (NO3) sensor (Halifax, NS, Canada), both integrated into the control box plumbing with flow-through cells available from the manufacturer. Additionally, a Los Gatos Research ultraportable greenhouse gas analyzer (UGGA) (cavity enhanced absorption spectrometer; Mountain View, CA, USA) was used to measure dry mole fraction of carbon dioxide (CO2) and methane (CH4) dissolved in surface water by equilibrating water with a small headspace using a sprayer-type equilibration system that has previously been shown to have fast response times relative to other designs16 (Figure S1). Both the EXO2 and the UGGA are capable of logging data at 1 Hz. Because the SUNA was operated out of the water and on a boat during warm periods, data were collected less frequently (appr. 0.1 Hz) to minimize lamp-on time and avoid the lamp temperature cutoff of 35° C. The EXO2 sonde uses a combination of electrical and optical sensors for: specific conductivity, water temperature, pH, dissolved oxygen, turbidity, fluorescent dissolved organic matter (fDOM), chlorophyll-a fluorescenece, and phycocyanin fluorescence. The SUNA instrument measures NO3 using in situ ultraviolet spectroscopy between 190-370 nm, has a detection range of 0.3-3000 microM NO3, and a precision of 2 microM NO3. The UGGA has a reported precision of 1 ppb (by volume). In order to translate time-series data from the instruments into spatial data, we also logged latitude and longitude at 1 Hz with a global positioning system (GPS) with the Wide Area Augmentation System (WAAS) functionality enabled allowing for less than 3 m accuracy for 95percent of measured coordinates. Synchronized time-stamps from the EXO2, UGGA, SUNA, and GPS were used to combine data streams into a single spatially-referenced dataset.
We ran a simple set of experiments to determine the residence time of the system and the overall response time of the EXO2 and UGGA sensors integrated into the platform. After determining first-order response characteristics of each sensor, we applied an ordinary differential equation method to correct the raw data for significant changes in water input resulting in higher accuracy spatial data (see Crawford et al. 2015).
Sensor response experiments
We conducted a series of sensor response experiments on Lake Mendota on August 1, 2014. The goal was to understand the potential lags and minimum response times for the EXO2 and UGGA sensors integrated into the FLAMe platform. These data were then used to develop correction procedures for higher accuracy spatial datasets. To test sensor responses to step-changes in water chemistry, we mixed a 40 L tracer solution into a plastic carboy that was connected to the reservoir port on the FLAMe. The reservoir was mixed with 50 mL of rhodamine WT to test the phytoplankton fluorescence sensors, 6 mL of quinine sulfate solution in acid buffer (100 QSE) to test the fDOM sensor, 14 g of KCl to test the conductivity sensor, and appr. 2 kg of ice to reduce the temperature of the solution relative to lake water. The mixture volume was increased to 40 L using tap water. We did not modify the CO2 concentration or pH in the carboy as we found the municipal water source to have greater than ambient lake CO2 (4300 vs. 290 microatm, respectively) and lower pH (7.5 vs 8.3, respectively). At the beginning of the experiments, we allowed lake water to circulate through the system for appr. 10 minutes. We then switched to the tracer solution for a period of five minutes, followed by five minutes of lake water, then back to the tracer solution for an additional five minutes.
Using the step-change experiment data, we determined each sensors hydraulic time constant (Hr) and parameter time constant (taus). The sensor-specific Hr is a function of system water residence time and sensor position/shielding within the system. Taus is the time required for a 63 percent response to a step-change input. Hr was calculated based on the plateau experiments and was indicated by the first observation with a non-zero rate of change. The CO2 and CH4 sensors had a much greater Hr than the EXO2 sensors because water must travel further through the system before equilibrating with the gas solution being pumped to the UGGA. Using these Hr values, we offset response variables thus removing the hydraulic lag. This correction does not account for sensor-specific response patterns (tau s). The EXO2 sensors have manufacturer-reported taus values between 2-5 s, but these values are not appropriate to apply to the FLAMe system because they do not include system hydraulic lag and mixing. In order to match sensor readings with spatial information, we first applied Hr values from each sensor output according to equation 2. This step aligns the time at which each sensor begins responding to the changing water, and accounts for the physical distance the water must travel before being sensed
In order to match individual sensor response characteristics and to obtain more accurate spatial data, we then applied sensor-specific corrections using Equation 3 (Fofonoff et al., 1974).
We first smoothed the raw data using a running mean of 3 observations in order to reduce inherent noise of the 1 Hz data. We then calculated dX/dt using a 3-point moving window around Xc. Equation 3 should ideally lead to a step response to a step-change input. We note that this is the same strategy used to correct oceanographic conductivity and temperature instruments (see Fozdar et al., 1985). Overall, the taus-corrected data show good responses to step-change inputs and indicate that this is a useful technique for generating higher accuracy spatial data. We include three types of data for each variable including: raw (e.g., TempC), the hydraulic lag corrected (e.g., TempC_hydro) and the taus-corrected data (e.g., TempC_tau). Note that not all sensors were used in each survey and not all sensors have each type of correction. This data was from our preliminary FLAMe sampling campaigns and future studies will include additional sensor outputs and corrections.
We used the FLAMe throughout the summer of 2014 on four distinct aquatic ecosystems including: a small dystrophic lake, a stream/lake complex, a medium-sized eutrophic lake, and a managed reach of the Upper Mississippi River. Each of these applications demonstrates the spatial variability of surface water chemistry and the flexibility of FLAMe for limnological research.
References
Crawford JT, Loken LC, Casson NJ, Smith C, Stone AG, and Winslow LA (2015) High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology. Environmental Science and Technology 49:442-450.
Fozdar FM, Parker GJ, and Imberger J (1985) Matching temperature and conductivity sensor response characteristics. Journal of Physical Oceanography 15:1557-1569.
Version Number
14

Satellite derived secchi disk depth and other lake and landscape characteristics in Wisconsin, USA, 1991 - 2012

Abstract
This data supports the following publication: Rose, K.C., S.R. Greb, M. Diebel, and M.G. Turner. Annual precipitation as a regulator of spatial and temporal drivers of lake water clarity. Ecological Applications. The data uses satellite remotely sensed estimates of Secchi disk depth (Landsat imagery), landscape features, and lake characteristics to understand how and why lakes vary and respond to different drivers through time and space. The data were produced by the authors and their collaborators, as acknowledged in the manuscript. The Secchi disk depth data span the time period 1991-2012.
Contact
Dataset ID
331
Date Range
-
Methods
The complete methods for this manuscript are described in the manuscript: Rose, K.C., S.R. Greb, M. Diebel, and M.G. Turner. Annual precipitation as a regulator of spatial and temporal drivers of lake water clarity. Ecological Applications.
NTL Keyword
Version Number
16

CLA Yahara Lakes Citizen Offshore Water Quality Monitoring 2016 - 2017

Abstract
In 2013, Clean Lakes Alliance (CLA) launched a Citizen Water Quality Monitoring pilot. Objectives included evaluating and tracking nearshore water quality conditions on all five Yahara lakes: Lakes Mendota, Monona, Waubesa, Kegonsa and Wingra. In 2016, in order to fully understand the interaction between the offshore and nearshore
environment, CLA volunteers will begin sampling the deepest point (deep hole) of all Yahara lakes. The offshore monitoring program will focus on two components: water clarity sampling and dissolved oxygen and temperature measurement. Data from the offshore monitoring program will be compared to data from the nearshore program.
Contact
Creator
Dataset ID
330
Date Range
-
Methods
On Lakes Mendota, Monona, Waubesa, Kegonsa and Wingra, volunteers will use a Secchi disk to measure water clarity, and a digital handheld thermometer to measure air and surface water temperatures once per week on Thursday mornings . Secchi depth monitoring will take place at the deepest point of each lake. On Lakes Monona and Waubesa, concurrent with Secchi sampling, volunteers will use a YSI 550A multiprobe meter to measure dissolved oxygen and temperature at multiple depths. All volunteers are trained by Clean Lakes Alliance staff.
Version Number
2

Long-term trends and synchrony in dissolved organic matter characteristics in Wisconsin, USA lakes: quality, not quantity, is highly sensitive to climate

Abstract
Dissolved organic matter (DOM) is a fundamental driver of many lake processes. In the past several decades, many lakes have exhibited a substantial increase in DOM quantity, measured as dissolved organic carbon (DOC) concentration. While increasing DOC is now widely recognized, fewer studies have sought to understand how characteristics of DOM (DOM quality) change over time. Quality can be measured in several ways, including the optical characteristics spectral slope (S275-295), spectral ratio (SR), absorbance at 254 nm (a254), and DOC-specific absorbance (SUVA; a254:DOC). However, long-term measurements of quality are not nearly as common as long-term measurements of DOC concentration. We used 24 years of DOC and absorbance data for seven lakes in the North Temperate Lakes Long Term Ecological Research site in northern Wisconsin, USA to examine temporal trends and synchrony in both DOC concentration and quality. We predicted lower SR and S275-295 and higher a254 and SUVA trends, consistent with increasing DOC and greater allochthony. DOC concentration exhibited both significant positive and negative trends among lakes. In contrast, DOC quality exhibited trends suggesting reduced allochthony or increased degradation, with significant long-term increases in SR in three lakes. Patterns and synchrony of DOM quality parameters suggest they are more responsive to climatic variations than DOC concentration. SUVA in particular tended to increase with greater moisture and decrease with drier conditions. These results demonstrate that DOC quantity and quality can exhibit different complex long-term trends and responses to climate components, with important implications for aquatic ecosystems.
Contact
Core Areas
Dataset ID
329
Date Range
-
Methods
Data contained within is derived from data publicly available through the North Temperature Lakes Long Term Ecological Research (NTL-LTER) website at the following url: https://lter.limnology.wisc.edu/. All data is for the upper meter of the water column, collected in the deepest point of the lake. For DOC concentration data and ancillary data such as pH, iron, and total N, please see the NTL-LTER website.
The file dat.w.blank.fin 7_29_16.csv contains the absorbance scans that were used to calculate the spectral metrics (NTL LTER 2012). Samples for absorbance scans were collected approximately quarterly. Absorbance scans were run on a spectrophotometer over the wavelengths from 200-800 nm. In this file, the column value is the raw value for absorbance read directly off the instrument for the corresponding wavelength. The column blank.value is the value of the DI blank taken nearest in time for the corresponding wavelength and cuvette width. The column cor.value is the blank.value column subtracted from the value column. The cor.value column was used in all subsequent analyses and calculations.
The file metrics for_analysis.csv contains the spectral metrics calculated from the absorbance scans as well as select meteorological metrics. ab.254 is raw absorbance measured by the instrument (after correcting for DI blanks), corrected for a 1 m pathlength. lin.slope.275.295 is the slope for the log transformed absorbance scan over the wavelengths 275-295 nm, determined by linear regression. nlin.slope.275.295 is the spectral slope (S275-295) over the wavelengths 275-295 nm, calculated using non-linear regression in R version 3.2.3 (R Core Team 2015), fitting the following equation:
alambda = alambdarefe-S(lambda-lambdaref)
In this equation a is the Naperian absorption coefficient (see below), lambda is the wavelength, lambdaref is the reference wavelength, and S is the spectral slope (nm-1) (Twardowski et al. 2004; Helms et al. 2008). The initial estimate supplied to the non-linear regression procedure was supplied by the value for lin.slope.275.295. lin.slope.350.400 and nlin.slope.350.400 were calculated in a similar fashion, but over the wavelengths 350-400 nm. This calculation yields the spectral slope over the wavelengths 350-400 nm (S350-400). slope.ratio is the slope ratio (SR), the ratio of S275-295 to S350-400 (Helms et al. 2008). ab.254.1cm is similar to ab.254, but is corrected for a 1 cm cuvette width. a254.nap is the Naperian absorption coefficient and is calculated from the equation:
a = 2.303A/l
In this equation, a is the Naperian absorption coefficient, A is raw absorbance measured by the spectrophotomer, and l is the path length (Green and Blough 1994). SUVA was calculated by dividing raw absorbance at 254 nm by the DOC concentration of the DOC sample collected nearest in time to the absorbance sample. SUVA is reported as Ltimesmg C-1timesm-1 (Weishaar et al. 2003).
wk.prcp, mth.prcp, and ninety prcp are precipitation totals for the 7, 30, and 90 days up to and including the sampling date (mm). These data come from the Minocqua, WI station in the Global Historical Climatology Network (GHCN) dataset (available at https://www.ncdc.noaa.gov/data-access/quick-links#ghcn) (Menne et al. 2010).
wk.tmp, mth.tmp, and ninety.tmp are mean values for the mid-daily temperature in the 7, 30, and 90 days up to and including the sampling date (°C). These are from the same data source as the precipitation data.
The l.lev column contains lake level from the NTL LTER website in meters above sea level. wk.insol, mth.insol, and ninety.insol are mean solar insolation incident on a horizontal surface in the 7, 30, and 90 days up to and including the sampling date (kWh/m2/day) (these data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center NASA/GEWEX SRB Project).
Monthly Palmer Drought Severity Index (PDSI) data corresponding to the study period can be accessed at: ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/ using StateCode=47 and Division=2. These data were retrieved from the US National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Information (NCEI). These data were used to relate trends and synchrony in spectral metrics to moisture conditions.
The DOC column contains DOC concentration (mg L-1) for the corresponding sample date, obtained from the NTL LTER website.

Short Name
DOM trends data
Version Number
19
Subscribe to chemical (all)