US Long-Term Ecological Research Network

Freshwater mussel metabolomics of Yahara Lakes, Madison, WI USA

Abstract
Metabolomic profiles of unionids (Lampsilis siliquoidea) under varying loads of zebra mussels (Dreissena polymorpha) in a eutrophic lake chain in Wisconsin, USA. Metabolites were sourced from hemolymph.<br/>
Core Areas
Creator
Dataset ID
424
Date Range
-
Methods
Mussels that were collected for glycogen analysis were immediately placed on ice to preserve the tissue for later analysis (following Dunn and Ellis, 2005). In the lab, individuals were sexed via external shell morphology, dried in a drying oven to a constant mass, weighed, then approximately 10mg of foot tissue was collected and run for glycogen analysis (following Naimo et al. 1998). For mussels that were sampled for metabolomics analysis, in the field, immediately after collection, approximately 200uL of hemolymph was drawn from the anterior adductor muscle using a 27–29-gauge syringe, stored in a 2mL cryotube, and flash frozen in liquid nitrogen. Unionids were then scraped of all zebra mussels if present and returned to the benthos. All zebra mussels greater than length 5mm were counted and measured along the major axis of the shell. Cumulative dry weight of all zebra mussels was estimated using a standard conversion of length to dry weight for zebra mussels (Coughlan et al. 2021). Zebra mussel loads were calculated as total estimated zebra mussel dry mass divided by the total dry mass of the unionid soft tissue. Hemolymph samples were stored at -80˚C until they were shipped on dry ice to West Coast Metabolomics Center at UC-Davis for non-targeted analysis of primary metabolites. Metabolites were identified using gas chromatography time-of-flight mass spectroscopy (GC-TOF MS and their peak heights were normalized to the sum peak height of annotated compounds (mTIC-normalization) by the West Coast Metabolomics Center. Each metabolite was independently normalized to zero and standardized to one standard deviation.<br/>
NTL Themes
Version Number
1

Prairie du Sac - Sauk City, Wisconsin, monthly precipitation data

Abstract
This is a compilation of total monthly precipitation data in total inches for two NOAA weather stations. The Prairie du Sac station data located at the Prairie du Sac dam on the Wisconsin River (43.31 , -89.7283) started with full monthly records being recorded in 1912 with complete monthly records through 2007. In mid-2007 a nearby station was established in Sauk City at the wastewater treatment plant (43.262 , -89.7349) with continuous data from 2008 through the present. The two stations are relatively close (about 3.25 miles apart), and both are slightly more than 4 miles to the west of the centroid of Fish Lake (Dane Co.) a core study lake in the North Temperate Lakes Long-Term Ecological Research Project conducted by the Center for Limnology at the University of Wisconsin-Madison. The compiled monthly records are based on daily NOAA precipitation records available electronically to the public. As a general practice, daily precipitation over weekends and holidays was not regularly recorded at the stations such that cumulative totals were recorded the following workweek day. As such, while the records for each single day were not always accurately recorded, the monthly totals were generally accurate. However, starting in 1996 at the Prairie du Sac station, because the cumulative weekend/holiday precipitation didn’t allow known daily totals, those cumulate weekend/holiday records were not submitted to NOAA so they were recorded as missing data in NOAA’s electronic dataset. To rectify the many months of missing data, pdf’s of the original hand-written monthly submissions were retrieved from NOAA’s archives such that the monthly precipitation totals could be calculated. In the process a few transcription errors in the electronic records of other months were also corrected in this dataset as well as determining a few other monthly records that were missing. Thus, this dataset of monthly precipitation at the two nearby weather stations is complete and hopefully accurate.<br/>
Dataset ID
422
Data Sources
LTER Keywords
Methods
With advice from Ed Hopkins, the Assistant State Climatologist, pdf’s of the original paper copies of the daily precipitation submissions of both stations were downloaded. Almost universally, precipitation over weekends and holidays was not recorded at the stations such that totals were recorded the following workweek day. In the early years, while the records for each single day were not always accurately recorded, the cumulative weekend/holiday totals were recorded such that one could get a full monthly total that was generally accurate. However, starting in 1996, because the cumulative weekend/holiday precipitation didn’t allow to know daily totals, those records were not submitted electronically to NOAA’s final database so they were recorded as missing data in NOAA’s electronic dataset. However, from the hand-written pdf’s it was possible to compile the monthly totals. In the process quite a few months were checked and a few errors in the NOAA totals fixed.<br/>
Version Number
1

Aquatic macrophyte, snail, and crayfish abundance and richness data for ten lakes in Vilas County, WI, USA, 1987-2020

Abstract
Data accompanying the paper Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)." Macrophytes and snails were sampled in ten lakes in Vilas County, Wisconsin, USA during summer sampling events in 1987, 2002, 2011, and 2020. Lakes had varying levels of invasion by F. rusticus, which affected measures of macrophytes and snails. Macrophytes were sampled using a point-intercept transect method and snails were sampled using different sampler types which were dependent on substrate. Macrophytes were sampled at 6-14 sites per lake and snails were sampled at 16-31 sites per lake. Crayfish were regularly sampled at either 24 or 36 sites per lake between 1987 and 2020. Overall, this dataset provides abundance and richness data for over 25 species of snails and over 40 species of macrophytes in 10 north temperate lakes.<br/>
Dataset ID
417
Methods
Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>
Version Number
2

Lake Mendota Microbial Observatory Temperature, Dissolved Oxygen, pH, and conductivity data, 2006-present.

Abstract
The Lake Mendota Microbial Observatory collects routine water physical and chemical
measurements alongside their microbial samples. This dataset includes measurements of water
temperature, dissolved oxygen, pH, and conductivity collected at the central Deep Hole,
collocated with a weather buoy (43°05'58.2"N 89°24'16.2"W). All measurements were collected
with handheld probes. Data from 2006-2014 was compiled from multiple sources and includes only
water temperature and dissolved oxygen. Data from 2014-2019 is from the same probe, a YSI Pro
Plus instrument, and also includes pH and specific conductance. Routine microbial observatory
sampling continues into the present.<br/>
Dataset ID
415
Date Range
-
Methods
Water measurements were taken with handheld meters at the central deep hole of
Lake Mendota.<br/>
Version Number
2

Lake Mendota Microbial Observatory Secchi Disk Measurements 2012-present

Abstract
The Lake Mendota Microbial Observatory collects routine water clarity measurements
alongside their microbial samples. This dataset includes measurements of water clarity
collected at the central Deep Hole, collocated with a weather buoy (43°05'58.2"N
89°24'16.2"W). All measurements were collected with handheld Secchi discs. When multiple
personnel performed the Secchi disc measurements, the average and standard deviation are
reported. To take the Secchi depth, sunglasses are removed and the disc is lowered on the
shaded side of the boat. The Secchi depth is the average between where the Secchi disc
disappears while lowering it and where it reappears while raising it. Routine microbial
observatory sampling continues into the present.<br/>
Dataset ID
416
Date Range
-
LTER Keywords
Methods
Measurements are taken at the central deep hole of Lake Mendota (43.099500,
-89.404500). All measurements were collected with handheld black and white Secchi discs.
When multiple personnel performed the Secchi disc measurements, the average and standard
deviation are reported. To take the Secchi depth, sunglasses are removed and the disc is
lowered on the shaded side of the boat. The Secchi depth is the average between where the
Secchi disc disappears while lowering it and where it reappears while raising
it.<br/>
Version Number
1

Fish catch and biomass per unit effort from McDermott and Sandy Beach Lakes 2017-2020

Abstract
Centarchidae spp., a warm-adapted group of fishes including basses and sunfishes, has increased in recent decades in Wisconsin. Concurrently, declines in cool-adapted species, including Walleye (Sander vitreus), have occurred but the cause is not understood. Multiple factors have been associated with these declines, including rising lake temperatures, habitat degradation, harvest, and species interactions. To quantify the role that competition and/or predation between increasing centrarchids and the rest of the fish community plays, we are conducting a whole-lake experiment to remove centrarchids from an experimental lake in northern Wisconsin while measuring the response of all other fish species. In 2018 and 2019, ~200,000 centrarchid individuals were removed, while species-specific catch-per-unit-effort (CPUE) and biomass-per-unit-effort (BPUE) were measured. Yellow Perch have increased in CPUE and BPUE, while centrarchid abundances have declined. We will continue removing centrarchids in 2021 and monitoring these populations. This information will be used to inform an understanding of the conditions necessary to support self-sustaining fish populations given global environmental change.<br/>
Core Areas
Creator
Dataset ID
398
Date Range
-
Maintenance
ongoing
Methods
Study area
The experimental (McDermott Lake; 46.00299280, -90.16081610) and reference (Sandy Beach Lake (46.10614350, -89.97131020) systems are located in Iron County in Northern, Wisconsin. McDermott Lake has a surface area of 33.1 ha and a mean depth of 3.0 m, while Sandy Beach Lake has a surface area of 44.5 ha and a mean depth of 2.1 m. Maximum depth in McDermott Lake is 5.7 m and in Sandy Beach Lake is 4.0 m. Both lakes include a variety of substrates (e.g., rock, gravel, and sand) and areas of submerged and emergent vegetation. At the start of the study, McDermott and Sandy Beach Lake fish communities were similar with high Centrarchidae spp. (i.e., centrarchid) abundances, few adult walleye, and a history of natural walleye recruitment. Other species present include yellow perch, northern pike, muskellunge, black bullhead, and white sucker (Table 1).
Fish sampling
Standardized surveys
From 2017-2020, we conducted fish population sampling on the experimental (McDermott) and reference (Sandy Beach) lakes. Every year of the study, we have conducted standardized monitoring surveys employing numerous sampling techniques to detect changes in the fish community relative to 2017-baseline information (Fig. 1). Sampling began immediately following ice-out (~mid-April) with the deployment of five fyke nets for one week. The fyky surveys served two purposes: 1) to serve as the capture method for marking walleye as part of the mark-recapture survey to attain a population estimate, and 2) to estimate other focal species (i.e., black crappie, yellow perch, muskellunge, northern pike) relative abundances. During these surveys, all collected walleye were measured (total length (TL); mm), sexed, checked for a Passive Integrated Responder (PIT) tag, and if one was not present, marked with a unique PIT tag. We also removed a dorsal spine sample for aging. Adult (mature) walleyes were defined as all fish 381 mm and all fish for which sex could be determined (regardless of length). Walleye of unknown sex &lt;381 mm were classified as juvenile (immature). McDermott and Sandy Beach Lakes have both had walleye population estimates previously conducted by the Wisconsin Department of Natural Resources (WDNR) therefore the goal was to mark 10% of the anticipated spawning population (based off of previous population estimates). Marking continued until the target number was reached or spent females began appearing in the fyke nets. Walleye were recaptured using an AC boat electrofishing survey within one week (typically 1-4 days) after netting and marking were completed. In each lake, the entire shoreline was sampled. All captured walleyes were measured and examined for marks. Based on electrofishing mark-recapture data, population estimates were calculated using the Chapman (1951) modification of the Petersen Estimator as:
N=((M+1)(C+1))/((R+1))
where N was the population estimate, M was the number of fish marked and released, C was the total number of fish captured and examined for marks in the recapture sample, and R was the total number of marked fish observed in C. The Chapman Modification method was used because it provides more accurate population estimates in cases when R is relatively small (Ricker 1975).

From early-May to mid-June, we sampled larval fishes using a 1,000m mesh conical ichthyoplankton net towed for five minutes immediately below the lake surface. Weekly samples were taken at night at five sampling locations in each lake. Each lake was divided into five quadrats and sites were established at a randomly selected nearshore (&lt;100 m of shore) location in each quadrat on each sampling date. Once selected, locations remained fixed throughout the study. Volume of water filtered during each tow was estimated using a General Oceanics© model 2030R flowmeter mounted in the center of the net frame. Samples were transferred to containers and stored in 90% ethanol. Collected fishes were identified to species according to Auer (1982) and enumerated.
In addition to the adult walleye population, we were interested in estimating the size of the adult largemouth bass population. We performed early summer (late-May) mark-recapture surveys using AC boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle with two netters) to sample largemouth bass. Collected largemouth bass were measured, checked for a top caudal fin clip, and if not present, marked with a top caudal fin clip and released. Adult (mature) largemouth bass were defined as all fish 203 mm. We aimed to recapture 10% of the marked population. Largemouth bass are in very low abundance in Sandy Beach Lake therefore a population estimate was not possible. In McDermott Lake, due to the small population size of largemouth bass we completed multiple marking surveys from late-May to early June to achieve this recapture rate. From electrofishing mark-recapture information, population estimates were calculated using the Schnabel (1938) modification of the Lincoln-Petersen method:
where N was the population estimate, M was the number of fish marked and released in sample t, C was the number of fish captured in sample t, and R was the number of fish already marked when caught in sample t.
To obtain centrarchid population demographic data, current standardized WDNR surveys of inland lakes consist of early summer (water temperature range = 13.0–21.0°C) AC boat electrofishing surveys or mid‐summer (18.3–26.7°C) mini‐fyke net (Simonson et al. 2008). To encompass this range of water temperatures, we performed a combination of surveys starting at the end of May with an AC boat electrofishing survey. Then, fish were sampled once monthly when lake surface water temperatures were ≥13.0°C in both lakes (June–September). Both lakes were sampled during 1‐week each month using three gears (AC boat electrofishing, mini-fyke nets, cloverleaf traps). Lakes were sampled on consecutive nights in each 1‐week period but only one gear type was employed per night.
All gears sampled shallow shorelines (0–5 m from bank, depth ≤2 m) and were deployed in fixed locations following standard approaches (Bonar et al. 2009). Sampling locations were evenly distributed along the shoreline of the lake, and all gears were deployed in similar habitat types. Five 10‐min nighttime boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle) transects were conducted using two dipnetters. Five mini‐fyke nets (0.9‐m × 0.61‐m frames, 3.2‐mm mesh [bar measure], 7.6‐m‐long lead, and a double throat) were deployed in areas where the net frames would be in 1.0–1.5 m of water, and leads were fixed onshore. Five cloverleaf traps (three lobed, height = 41 cm, 50 cm diameter, 6.0‐mm bar wire mesh with 12.7‐mm‐wide openings between lobes, and an attractant [liver]) were deployed in littoral habitats. Both mini‐fyke nets and cloverleaf traps were set in early afternoon, fished overnight, and retrieved the following afternoon (~24‐h soak time). All catches were standardized according to gear-specific effort. For boat electrofishing, catch per unit effort (CPUE) is presented as fish/hr. For mini-fyke nets and cloverleaf traps, CPUE is calculated as fish/net night or fish/trap night.
To quantify walleye recruitment in each lake, we employed multiple gears throughout the sampling season including micromesh gillnets, beach seines, and boat electrofishing. In late July/early August, we deployed four 46-m x 1.2-m gillnets with 0.95-cm bar mesh. Sampling locations were evenly distributed along the shoreline and locations were fixed each year. Gillnets were set at night and at depths ranging from 0-5 m. Set duration ranged 1-2 hours to minimize bycatch, thus catches were standardized to age-0 walleyes collected per 10 hours of soak time. In late August, we pulled .24-m long beach seines with 0.64-cm mesh at five sites in each lake. Sites were chosen to represent a variety of habitat types and based on ability to effectively use the seine. Seining sites remained fixed for the duration of the study. Seines were used during daylight hours on each lake. Catch per unit effort was calculated as the number of individuals per seine haul. When water temperatures fell below 21°C (early September), we sampled age-0 walleyes using nighttime boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle, two netters). The entire shoreline of each lake was sampled. Surveys were conducted prior to walleye fingerling stocking. All collected walleye were measured (TL, mm). Catch per unit effort was calculated as the number of age-0 walleyes per meter shoreline.
Removal efforts
In addition to standardized surveys in our experimental lake, in 2018 we began centrarchid removal efforts using a variety of techniques including fyke nets, boat electrofishing, mini-fyke nets, and cloverleaf traps (Fig. 1). Following annual spring fyke net surveys, fyke nets remained in the experimental lake to remove centrarchids. In 2018, we sampled 10 fyke nets from May 14 to June 7 when centrarchid catches started to decline. Due to personnel limitations, in 2019 and 2020 only five fyke nets were used from late spring (May 9, April 30) until late June (June 27, June 25). Additionally, we sampled five mini-fyke nets and 21 cloverleaf traps from late May through mid-August. All gears were emptied every 1-2 days and sites were rotated to maximize centrarchid catches. Collected fish were identified to species and measured (TL, mm). Centrarchid species were retained while other species were returned to McDermott Lake.
NTL Themes
Version Number
1

Lake Mendota, Wisconsin, USA, (Non-Dreissenid) Benthic Macroinvertebrate Abundance, Biomass, and Community Composition 2016-2018

Abstract
We sampled the zoobenthos (macroinvertebrates of the benthos) of Lake Mendota from 2016-2018 to track impacts of invasive zebra mussels (Dreissena polymorpha) which were discovered in Lake Mendota in 2015 and grew exponentially to densities greater than 10,000 m-2 in shallow, rocky habitat by 2018. The data presented here exclude all zebra mussels, which are archived in a separate datset. We sampled along three transects inherited from Karatayev et al. (2013) at five different depths (1, 3, 5, 8, and 10 m) twice a summer (June and August) from 2016-2018. These data also contain some samples opportunistically taken from deeper depths along these transects that do not follow the routine sampling structure. A pared-down version of this routine sampling continued from 2019 onward but is not included here. This dataset complements zebra mussel and phytobenthos data collected according to the same routine sampling structure, for which data is also archived with EDI.
Core Areas
Dataset ID
394
Data Sources
Date Range
-
Methods
We sampled non-zebra mussel benthic macroinvertebrates twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along each of three transects (A-C) running perpendicular to the shore of Lake Mendota. We collected triplicate samples from each site using a 0.625 m-2 circular quadrat and an airlift method with a modified SCUBA tank suction device called an AquaVac. Air was released through a PVC pipe, creating backpressure to lift sediment, which was captured in a 500μm mesh bag and transported in a resealable plastic bag. We chose an airlift method because of difficulty closing Eckman samplers on the hard substrates of rock and zebra mussel druses. Occasionally additional samples were taken with an Eckman, often at deeper depths, for comparing to the main transects and depths sampled with AquaVac or to collect additional material for isotope analysis.<br/>We sampled non-zebra mussel benthic macroinvertebrates twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along each of three transects (A-C) running perpendicular to the shore of Lake Mendota. We collected triplicate samples from each site using a 0.625 m-2 circular quadrat and an airlift method with a modified SCUBA tank suction device called an AquaVac. Air was released through a PVC pipe, creating backpressure to lift sediment, which was captured in a 500μm mesh bag and transported in a resealable plastic bag. We chose an airlift method because of difficulty closing Eckman samplers on the hard substrates of rock and zebra mussel druses. Occasionally additional samples were taken with an Eckman, often at deeper depths, for comparing to the main transects and depths sampled with AquaVac or to collect additional material for isotope analysis.<br/>
Version Number
1

Lake Mendota, Wisconsin, USA, Zebra Mussel Density and Biomass 2016-2018

Abstract
We sampled adult zebra mussels (Dreissena polymorpha) in the benthos of Lake Mendota from 2016-2018 to track the growth of the population following its initial detection in fall 2015. We sampled along three transects inherited from Karatayev et al. (2013) at five different depths (1, 3, 5, 8, and 10 m) twice a summer (June and August) from 2016-2018. Because suitable zebra mussel substrate was limited at these sites, we also selected five 1 m depth, rocky sites (optimal zebra mussel sites) to track density and biomass where colonization was most intense. A pared-down version of this routine sampling continued from 2019 onward but is not included here. This dataset complements zoobenthos and phytobenthos data collected according to the same routine sampling structure, as well as larval zebra mussel (veliger) sampling for which data is also archived with EDI. Biomass data are modeled from lengths of up to 100 individuals that were measured in each sample. Those lengths were fed into Lake Mendota-specific length-to-weight power law equations parameterized by body size measurements (length, width, live weight, wet weight, dry weight, shell weight, shell-free weight, and ash-free dry weight) of 99 mussels collected at different sites across Lake Mendota in 2018.
Core Areas
Dataset ID
393
Date Range
-
LTER Keywords
Methods
We sampled adult zebra mussels twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along each of three transects running perpendicular to shore (A-C). Dominant substrates at transect A were rock at 1 m depth, sand at 3 and 5 m, and muck at 8 and 10 m. At transects B and C, sand was the dominant substrate at 1 and 3 m depth and muck was dominant at 5, 8, and 10m. Significant macrophyte growth was generally absent at all sites in June and occurred mostly at 1, 3, and 5 m sites only at transects A and C. Because most sites lacked hard substrate (rocks, logs, etc.) suitable for zebra mussel colonization, we also sampled five additional rocky 1m depth sites to represent prime zebra mussel habitat.<br/>We sampled adult zebra mussels twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along each of three transects running perpendicular to shore (A-C). Dominant substrates at transect A were rock at 1 m depth, sand at 3 and 5 m, and muck at 8 and 10 m. At transects B and C, sand was the dominant substrate at 1 and 3 m depth and muck was dominant at 5, 8, and 10m. Significant macrophyte growth was generally absent at all sites in June and occurred mostly at 1, 3, and 5 m sites only at transects A and C. Because most sites lacked hard substrate (rocks, logs, etc.) suitable for zebra mussel colonization, we also sampled five additional rocky 1m depth sites to represent prime zebra mussel habitat.<br/>We sampled adult zebra mussels twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along each of three transects running perpendicular to shore (A-C). Dominant substrates at transect A were rock at 1 m depth, sand at 3 and 5 m, and muck at 8 and 10 m. At transects B and C, sand was the dominant substrate at 1 and 3 m depth and muck was dominant at 5, 8, and 10m. Significant macrophyte growth was generally absent at all sites in June and occurred mostly at 1, 3, and 5 m sites only at transects A and C. Because most sites lacked hard substrate (rocks, logs, etc.) suitable for zebra mussel colonization, we also sampled five additional rocky 1m depth sites to represent prime zebra mussel habitat.
Version Number
1

Lake Mendota, Wisconsin, USA, Zebra Mussel Veliger Water Column Density 2016-2019

Abstract
We sampled veliger (larval stage) zebra mussels (Dreissena polymorpha) from 2016-2019.
Zebra mussels are invasive in Lake Mendota and were first detected in November 2015. Samples
were taken at three different sites on Lake Mendota from June to August in 2016, and from
June to November in 2018-2019, using a 0.5 m diameter, 64 micrometer mesh size plankton net
for an 8 m depth tow. This dataset complements adult zebra mussel, zoobenthos, and
phytobenthos data collected during the same time period, for which data is also archived
with EDI.
Core Areas
Dataset ID
392
Data Sources
Date Range
-
Methods
We sampled larval zebra mussels (veligers) using a 64 microm mesh, 0.5 m diameter
plankton net and stored them in 80% ethanol in 200 mL containers at 25degree C for 0-12
weeks until processing. At each site we performed triplicate 8 m depth plankton tows by
pulling a net from 2 m above the lake bottom at the 10 m depth sites of transects A-C
developed for adult zebra mussel collection. We collected samples approximately every 14
days from June to August in 2016, and June to November in 2017-2019. During fall
sampling, poor weather conditions occasionally limited the number of sites or replicates
collected. We also sampled veligers biweekly in 2019 but reduced sampling to one
replicate per site and only sampled at one site after September. Because veligers are
small and difficult to see, enumeration was time consuming. <br/>We sampled larval zebra mussels (veligers) using a 64 microm mesh, 0.5 m diameter
plankton net and stored them in 80% ethanol in 200 mL containers at 25degree C for 0-12
weeks until processing. At each site we performed triplicate 8 m depth plankton tows by
pulling a net from 2 m above the lake bottom at the 10 m depth sites of transects A-C
developed for adult zebra mussel collection. We collected samples approximately every 14
days from June to August in 2016, and June to November in 2017-2019. During fall
sampling, poor weather conditions occasionally limited the number of sites or replicates
collected. We also sampled veligers biweekly in 2019 but reduced sampling to one
replicate per site and only sampled at one site after September. Because veligers are
small and difficult to see, enumeration was time consuming. <br/>We sampled larval zebra mussels (veligers) using a 64 microm mesh, 0.5 m diameter
plankton net and stored them in 80% ethanol in 200 mL containers at 25degree C for 0-12
weeks until processing. At each site we performed triplicate 8 m depth plankton tows by
pulling a net from 2 m above the lake bottom at the 10 m depth sites of transects A-C
developed for adult zebra mussel collection. We collected samples approximately every 14
days from June to August in 2016, and June to November in 2017-2019. During fall
sampling, poor weather conditions occasionally limited the number of sites or replicates
collected. We also sampled veligers biweekly in 2019 but reduced sampling to one
replicate per site and only sampled at one site after September. Because veligers are
small and difficult to see, enumeration was time consuming.
Version Number
1

Lake Mendota, Wisconsin, USA, Phytobenthos Abundance and Community Composition 2016-2018

Abstract
We sampled the phytobenthos (epibenthic periphyton) of Lake Mendota from 2016-2018 to track impacts of invasive zebra mussels (Dreissena polymorpha) which were discovered in Lake Mendota in 2015 and grew exponentially to densities greater than 10,000 m-2 in shallow, rocky habitat by 2018. We sampled along three transects inherited from Karatayev et al. (2013) at five different depths (1, 3, 5, 8, and 10 m) twice a summer (June and August) from 2016-2018. A pared-down version of this routine sampling continued from 2019 onward but is not included here. This dataset complements zebra mussel and zoobenthos data collected according to the same routine sampling structure, for which data is also archived with EDI.
Core Areas
Dataset ID
391
Data Sources
Date Range
-
Methods
We sampled phytobenthos twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along three transects running perpendicular to shore (A-C, Fig. 1). We collected triplicate samples at each site. SCUBA divers retrieved one rock at rock-dominated sites, or a petri dish full of undisturbed sediment at sand- and muck-dominated sites, and transported samples to the surface in a resealable plastic bag. In the laboratory, we scrubbed phytobenthos from rocks with a brush or emptied petri dish contents into a beaker. We separated phytobenthos from inorganic material by adding ~1 L of deionized water, homogenizing the sample, allowing settlement of inorganic material, and decanting the suspended phytobenthos. We kept samples dark and refrigerated until completely processed to prevent cell division after collection. <br/>We sampled phytobenthos twice a summer (early June and late August) from 2016-2018 at five depths (1, 3, 5, 8, and 10m) along three transects running perpendicular to shore (A-C, Fig. 1). We collected triplicate samples at each site. SCUBA divers retrieved one rock at rock-dominated sites, or a petri dish full of undisturbed sediment at sand- and muck-dominated sites, and transported samples to the surface in a resealable plastic bag. In the laboratory, we scrubbed phytobenthos from rocks with a brush or emptied petri dish contents into a beaker. We separated phytobenthos from inorganic material by adding ~1 L of deionized water, homogenizing the sample, allowing settlement of inorganic material, and decanting the suspended phytobenthos. We kept samples dark and refrigerated until completely processed to prevent cell division after collection.
Version Number
1
Subscribe to NTL LTER