US Long-Term Ecological Research Network

LTREB Lake Mývatn Midge Infall 2008-2011

Abstract
Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages that transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland we measured relative midge density on land using passive aerial infall traps during the summers 2008-2011. These traps, a cup with a small amount of lethal preservative, were placed along transects perpendicular to the lake edge and extending ~150-500 m into the shoreline ecosystem and were sampled approximately weekly from May-August. The measurements of midge relative abundance over land were then used to develop a local maximum decay function model to predict proportional midge deposition with distance from the lake (Dreyer et al. <em>in press</em>). In general, peak midge deposition occurrs 20-25 m inland and 70% of midges are deposited within 100 m of shore.
Additional Information
<p>Portions of Abstract and methods edited excerpt from Dreyer et al. <em>in Press</em> which was derived, in part, from these data.</p>
Contact
Dataset ID
306
Date Range
-
Maintenance
On-going
Metadata Provider
Methods
I. Study System Lake Mývatn, Iceland (65&deg;36 N, 17&deg;0&prime; W) is a large (38 km<sup>2</sup>) shallow (4 m max depth) lake divided into two large basins that function mostly as independent hydrologic bodies (Ólafsson 1979). The number of non-biting midge (Diptera: Chironomidae) larvae on the lake bottom is high, but variable: midge production between 1972-74 ranged from 14-100 g ash-free dw m<sup>-2</sup> yr<sup>-1</sup>, averaging 28 g dw m<sup>-2</sup> yr<sup>-1</sup> (Lindegaard and Jónasson 1979). The midge assemblage is mostly comprised of two species (&gt; 90% of total individuals), Chironomus islandicus (Kieffer) and Tanytarsus gracilentus (Holmgren) that feed as larvae in the sediment in silken tubes by scraping diatoms, algae, and detritus off the lake bottom (Lindegaard and Jónasson 1979). At maturity (May-August) midge pupae float to the lake surface, emerge as adults, and fly to land, forming large mating swarms around the lake (Einarsson et al. 2004, Gratton et al. 2008). On land, midges are consumed by terrestrial predators (Dreyer et al. 2012, Gratton et al. 2008), or enter the detrital pool upon death (Gratton et al. 2008, Hoekman et al. 2012). Midge populations naturally cycle with 5-8 year periodicity, with abundances fluctuating by 3-4 orders of magnitude (Einarsson et al. 2002, Ives et al. 2008). II. Midge Infall Measurement We deployed eleven transects of passive, lethal aerial infall traps arrayed at variable distances from Lake Mývatn to estimate relative midge abundance on shore during the summers 2008-2011. Each transect was perpendicular to the lake edge, with traps located at approximately 5, 50, 150, and 500 m (where possible) from shore for a total of 31 traps around the lake. Sampling locations were recorded using GPS and precise distances from the lake were calculated within a geographic information system. Traps consisted of a single 1000 mL clear plastic cup (0.0095 m<sup>2</sup> opening) affixed 1 m above the ground on a stake and filled with 300-500 mL of a 1:1 mixture of water and ethylene glycol and a trace amount of unscented detergent to capture, kill, and preserve insects landing on the surface of the liquid (Gratton et al. 2008, Dreyer et al. 2012). Midges and other insects were emptied from the traps weekly and the traps were reset immediately, thus collections span the entirety of each summer. III. Identification, Counts, and Conversions Midges were counted and identified to morphospecies, small and large. The midge (Diptera,Chrionomidae) assemblage at Mývatn is dominated by two species, Chironomus islandicus (Kieffer)(large, 1.1 mg dw) and Tanytarsus gracilentus (Holmgren)(small, 0.1 mg dw), together comprising 90 percent of total midge abundance (Lindegaard and Jonasson 1979). First, the midges collected in the infall traps were spread out in trays, and counted if there were only a few. Some midges were only identified to the family level of Simuliidae, and other arthropods were counted and categorized as the group, others. Arthropods only identified to the family level Simuliidae or classified as others were not dually counted as Chironomus islandicus or Tanytarsus gracilentus . If there were many midges, generally if there were hundreds to thousands, in an infall trap, subsamples were taken. Subsampling was done using plastic rings that were dropped into the tray. The rings were relatively small compared to the tray, about 2 percent of the area of a tray was represented in a ring. The area inside a ring and the total area of the trays were also measured. Note that different sized rings and trays were used in subsample analysis. These are as follows, trays, small (area of 731 square centimeters), &ldquo;large1&rdquo; (area of 1862.40 square centimeters), and large2 (area of 1247 square centimeters). Rings, standard ring (diameter of 7.30 centimeters, subsample area is 41.85 square centimeters) and small ring (diameter of 6.5 centimeters, subsample area is 33.18 square centimeters). A small ring was only used to subsample trays classified as type &ldquo;large2.&rdquo;The fraction subsampled was then calculated depending on the size of the tray and ring used for the subsample analysis. If the entire tray was counted and no subsampling was done then the fraction subsampled was assigned a value of 1.0. If subsampling was done the fraction subsampled was calculated as the number of subsamples taken multiplied by the fraction of the tray that a subsample ring area covers (number of subsamples multiplied by (ring area divided by tray area)). Note that this is dependent on the tray and ring used for subsample analysis. Finally, the number of midges in an infall trap accounting for subsampling was calculated as the raw count of midges divided by the fraction subsampled (raw count divided by fraction subsampled).Other metrics such as total insects in meters squared per day, and total insect biomass in grams per meter squared day can be calculated with these data. In addition to the estimated average individual midge masses in grams, For 2008 through 2010 average midge masses were calculated as, Tanytarsus equal to .0001104 grams, Chironomus equal to .0010837 grams. For 2011 average midge masses were, Tanytarsus equal to .000182 grams, Chironomus equal to .001268 grams.
Version Number
13

LTREB Lake Mývatn Midge Emergence 2008-2011

Abstract
Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages that transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. Between 2008-2011 at the naturally productive Lake Myvatn, Iceland we measured total insect emergence from water using emergence traps suspended in the water column. These traps were placed throughout the south basin of Lake Myvatn and were sampled every 1-3 weeks during the summer months (May-August). The goal of this sampling regime was to estimate total midge emergence from Lake Myvatn, with the ultimate goal of predicting, in conjunction with land-based measurements of midge density (see Lake Myvatn Midge Infall 2008-2011) the amount of midges that are deposited on the shoreline of the lake. Estimates from emergence traps between 2008-2011 indicated a range of 0.15 g dw m-2 yr-1 to 3.7 g dw m-2 yr-1, or a whole-lake emergence of 3.1 Mg dw yr-1 to 76 Mg dw yr-1.
Additional Information
<p>Portions of Abstract and methods edited excerpt from Dreyer et al. <em>in Press</em> which was derived, in part, from these data.</p>
Contact
Dataset ID
305
Date Range
-
Maintenance
Ongoing
Metadata Provider
Methods
I. Study System Lake Mývatn, Iceland (65&deg;36 N, 17&deg;0&prime; W) is a large (38 km<sup>2</sup>) shallow (4 m max depth) lake divided into two large basins that function mostly as independent hydrologic bodies (Ólafsson 1979). The number of non-biting midge (Diptera: Chironomidae) larvae on the lake bottom is high, but variable: midge production between 1972-74 ranged from 14-100 g ash-free dw m<sup>-2</sup> yr<sup>-1</sup>, averaging 28 g dw m<sup>-2</sup> yr<sup>-1</sup> (Lindegaard and Jónasson 1979). The midge assemblage is mostly comprised of two species (&gt; 90% of total individuals), Chironomus islandicus (Kieffer) and Tanytarsus gracilentus (Holmgren) that feed as larvae in the sediment in silken tubes by scraping diatoms, algae, and detritus off the lake bottom (Lindegaard and Jónasson 1979). At maturity (May-August) midge pupae float to the lake surface, emerge as adults, and fly to land, forming large mating swarms around the lake (Einarsson et al. 2004, Gratton et al. 2008). On land, midges are consumed by terrestrial predators (Dreyer et al. 2012, Gratton et al. 2008), or enter the detrital pool upon death (Gratton et al. 2008, Hoekman et al. 2012). Midge populations naturally cycle with 5-8 year periodicity, with abundances fluctuating by 3-4 orders of magnitude (Einarsson et al. 2002, Ives et al. 2008). II. Midge Emergence Measurement We used submerged conical traps to estimate midge emergence from Lake Mývatn. Traps were constructed of 2 mm clear polycarbonate plastic (Laird Plastics, Madison, WI) formed into a cone with large-diameter opening of 46 cm (0.17 m<sup>2</sup>). The tops of the cones were open to a diameter of 10 cm, with a clear jar affixed at the apex. The trap was weighted to approximately neutral buoyancy, with the jar at the top containing air to allow mature midges to emerge. Traps were suspended with a nylon line ~1 m below the surface of the lake from an anchored buoy. For sampling, traps were raised to the surface and rapidly inverted, preventing midges from escaping. Jars and traps were thoroughly rinsed with lake water to collect all trapped midges, including unmetamorphosed larvae and pupae, and scrubbed before being returned to the lake to prevent growth of epiphytic algae and colonization by midges. We assume that the emergence traps collect all potentially emerging midges from the sampling area, though it is likely an underestimate, since some midges initially captured could fall out of the trap. Thus, our results should be considered a conservative estimate of potential midge emergence from the surface of the lake.We sampled midge emergence throughout the south basin of Lake Mývatn. Emergence was sampled at six sites in 2008 and 2011 and ten sites in 2009 and 2010, with locations relocated using GPS and natural sightlines. Each site had two traps within 5 m of each other that were monitored during midge activity, approximately from the last week of May to the first week of August. Midge emergence outside of this time frame is extremely low (Lindegaard &amp; Jónasson 1979) and we assume it to be zero. Traps were checked weekly during periods of high emergence (initial and final 2-3 weeks of the study), and bi-weekly during low emergence periods in the middle of the study (July). III. Identification, Counts, and Conversions Midges were counted and identified to morphospecies, small and large. The midge (Diptera,Chrionomidae) assemblage at Mývatn is dominated by two species, Chironomus islandicus (Kieffer)(large, 1.1 mg dw) and Tanytarsus gracilentus (Holmgren)(small, 0.1 mg dw), together comprising 90 percent of total midge abundance (Lindegaard and Jonasson 1979). First, the midges collected in the infall traps were spread out in trays, and counted if there were only a few. Some midges were only identified to the family level of Simuliidae, and other arthropods were counted and categorized as the group, others. Arthropods only identified to the family level Simuliidae or classified as others were not dually counted as Chironomus islandicus or Tanytarsus gracilentus . If there were many midges, generally if there were hundreds to thousands, in an infall trap, subsamples were taken. Subsampling was done using plastic rings that were dropped into the tray. The rings were relatively small compared to the tray, about 2 percent of the area of a tray was represented in a ring. The area inside a ring and the total area of the trays were also measured. Note that different sized rings and trays were used in subsample analysis. These are as follows, trays, small (area of 731 square centimeters), &ldquo;large1&rdquo; (area of 1862.40 square centimeters), and large2 (area of 1247 square centimeters). Rings, standard ring (diameter of 7.30 centimeters, subsample area is 41.85 square centimeters) and small ring (diameter of 6.5 centimeters, subsample area is 33.18 square centimeters). A small ring was only used to subsample trays classified as type &ldquo;large2.&rdquo;The fraction subsampled was then calculated depending on the size of the tray and ring used for the subsample analysis. If the entire tray was counted and no subsampling was done then the fraction subsampled was assigned a value of 1.0. If subsampling was done the fraction subsampled was calculated as the number of subsamples taken multiplied by the fraction of the tray that a subsample ring area covers (number of subsamples multiplied by (ring area divided by tray area)). Note that this is dependent on the tray and ring used for subsample analysis. Finally, the number of midges in an infall trap accounting for subsampling was calculated as the raw count of midges divided by the fraction subsampled (raw count divided by fraction subsampled).Other metrics such as total insects in meters squared per day, and total insect biomass in grams per meter squared day can be calculated with these data. In addition to the estimated average individual midge masses in grams, For 2008 through 2010 average midge masses were calculated as, Tanytarsus equal to .0001104 grams, Chironomus equal to .0010837 grams. For 2011 average midge masses were, Tanytarsus equal to .000182 grams, Chironomus equal to .001268 grams.
Version Number
13

LTREB Kalfastrond Peninsula Experiment (KAL) Midge Counts at Lake Myvatn 2008-2011

Abstract
A cross ecosystem resource blocking experiment was conducted on the Kalfastrond peninsula, known as the KAL experiment or KAL midge blocking experiment, at Lake Myvatn to determine the influence of an aquatic resource on a terrestrial food web over time. A manipulative field experiment was used in conjunction with a stable isotope analysis to examine changes in terrestrial arthropod food webs in response to the midge subsidy. Cages were established at 2 by 2 meter plots in 6 blocks spread across the site. Each block included 3 treatment levels, an open control plot, a full exclusion cage and a partial exclusion cage, for a total of 18 experimental plots. Midge exclusion cages were designed to prevent midges from entering plots with such cages. Control open pit midge cages were set as a control which allowed complete access to all arthropods. Partial midge exclusion cages were designed and used to examine any effects of cages themselves on terrestrial responses while minimally affecting midge inputs into the plots and arthropod movement. All cages were set at the middle to end of May to the beginning of August in each year, the period corresponding to the active growing season of plants and the flight activity of midges at this site. Midge activity was measured in all plots to document changes in midge abundance over the course of a season and between years and to assess the degree to which cages excluded midges.Midge abundance in the plots was continuously measured using passive aerial infall traps. Midges from infall traps were counted and identified to morphospecies, where the small species is Tanytarsus gracilentus and the large species is Chironomus islandicus. Some arthropods were only identified to the family level Simuliidae, and other arthropods were lumped in a category named others. If the infall trap contained hundreds to thousands of a particular midge species a subsample for each species was performed to estimate the number of midges trapped. These data are the results of the midge counts from the infall traps.
Contact
Core Areas
Dataset ID
284
Date Range
-
Maintenance
Ongoing
Metadata Provider
Methods
I. Field MethodsThe site where this manipulative field experiment was conducted on the Kalfastrond peninsula at Lake Myvatn is approximately 150 meters long and 75 meters wide. The vegetation consists of grasses Deschampsia spp., Poa spp., and Agrostis spp.), sedges (Carex spp.), and forbs (Ranunculus acris, Geum rivale,and Potentilla palustris). The experimental midge exclusions occurred from the middle or end of May to the beginning of August in each year, the period corresponding to the active growing season of plants and the flight activity of midges at this site. 2 by 2 meter plots were established in 6 blocks spread across the site. Each block included 3 treatment levels, an open control plot, a full exclusion cage and a partial exclusion cage, for a total of 18 experimental plots. Control plots were open to allow complete access to all arthropods. Experimental midge exclusion cages were 1 meter high and constructed from white PVC tubing affixed to rebar posts on each corner of the plot, Plate 1. Full exclusion cages were entirely covered with white polyester netting, 200 holes per square inch, Barre Army Navy Store, Barre VT, USA, to prevent midges from entering the plot. The mesh netting completely enclosed the 2 by 2 by 1 meter frame to prevent flying insects from entering, however the mesh was not secured to the ground in order to allow non flying,ground crawling, arthropods to freely enter and exit the cages. Partial exclusion cages had one 0.5 meter strip of mesh stretched around the outside of the frame and another 0.75 meter strip draped over the top. Partial cages were designed to examine any effects of cages themselves on terrestrial responses while minimally affecting midge inputs into the plots and arthropod movement.The partial exclusion treatment was discontinued in 2011. Each plot contains a pitfall and an infall trap that are continuously sampled during the summer, while the cages are up. Vacuum samples were taken from the plots about once per month in 2008 through 2010 and only once per summer for subsequent summers.Midge activity was measured in all plots to document changes in midge abundance over the course of a season and between years and to assess the degree to which cages excluded midges. Midge abundance in the plots was continuously measured using passive aerial infall traps consisting of a 1000 milliliter clear plastic cup, 95 square centimeter opening, attached to a post 0.5 meters high and filled with 250 milliliters of a 1 to 1 ethylene glycol to water solution and a small amount of unscented detergent to capture and kill insects that alighted upon the surface. Infall traps were emptied about every 10 days.II. AnalysisMidges were counted and identified to morphospecies, small and large. The midge (Diptera,Chrionomidae) assemblage at Myvatn is dominated by two species,Chironomus islandicus (Kieffer)(large, 1.1 mg dw) and Tanytarsus gracilentus(Holmgren)(small, 0.1 mg dw), together comprising 90 percent of total midge abundance (Lindegaard and Jonasson 1979). First, the midges collected in the infall traps were spread out in trays, and counted if there were only a few. Some midges were only identified to the family level of Simuliidae,and other arthropods were counted and categorized as the group, others. Arthropods only identified to the family level Simuliidae or classified as others were not dually counted as Chironomus islandicus or Tanytarsus gracilentus. If there were many midges, generally if there were hundreds to thousands, in an infall trap,subsamples were taken. Subsampling was done using plastic rings that were dropped into the tray. The rings were relatively small compared to the tray, about 2 percent of the area of a tray was represented in a ring. The area inside a ring and the total area of the trays were also measured. Note that different sized rings and trays were used in subsample analysis. These are as follows, Trays, small (area of 731 square centimeters), large1 (area of 1862.40 square centimeters), and large2 (area of 1247 square centimeters). Rings, standard ring (diameter of 7.30 centimeters, subsample area is 41.85 square centimeters) and small ring (diameter of 6.5 centimeters, subsample area is 33.18 square centimeters). A small ring was only used to subsample trays classified as type large2.The fraction subsampled was then calculated depending on the size of the tray and ring used for the subsample analysis. If the entire tray was counted and no subsampling was done then the fraction subsampled was assigned a value of 1.0. If subsampling was done the fraction subsampled was calculated as the number of subsamples taken multiplied by the fraction of the tray that a subsample ring area covers (number of subsamples multiplied by (ring area divided by tray area)). Note that this is dependent on the tray and ring used for subsample analysis. Finally, the number of midges in an infall trap accounting for subsampling was calculated as the raw count of midges divided by the fraction subsampled (raw count divided by fraction subsampled).Other metrics such as total insects in meters squared per day, and total insect biomass in grams per meter squared day can be calculated with these data. in addition to the estimated average individual midge masses in grams, For 2008 through 2010 average midge masses were calculated as, Tanytarsus equal to .0001104 grams, Chironomus equal to .0010837 grams. For 2011 average midge masses were, Tanytarsus equal to .000182 grams, Chironomus equal to .001268 grams.
Version Number
15

North Temperate Lakes LTER: Crayfish Abundance 1981 - current

Abstract
Crayfish data include crayfish catch in cylindrical minnow traps baited with beef liver and occasional occurrence in other gear used to sample fish. Traps are placed at fyke net locations in nine study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, Mendota, Monona, Wingra and Fish). Crayfish traps have been eliminated as gear in the Madison area lakes (Mendota, Monona, Wingra, and Fish) after 2003. Individuals are identified to species and counted. In Trout and Sparkling Lake more detailed surveys have been conducted during the summer on an ad hoc basis to track distribution and abundance of the invading species Orconectes rusticus. In Sparkling lake Rusty Crayfish (Orconectes rusticus) was removed from 2001 to 2008. Catherine L Hein, Brian M Roth, Anthony R Ives, and M Jake Vander Zanden. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences. 63(2): 383-393. https://doi.org/10.1139/f05-229. Additional data sets consist of pre-LTER sets (initiated in late June 1972) gathered by Capelli (Ph.D. dissertation) and Lorman (Ph.D. dissertation). Most of pre-LTER data is detailed distribution in Trout Lake, and community composition in other area lakes. Sampling Frequency: annually Number of sites: 9
Note that 2020 data does not exist due to insufficient sampling.
Core Areas
Dataset ID
3
Date Range
-
DOI
doi:10.6073/pasta/9857e393aad5e143165cc38989d92944
Maintenance
ongoing
Metadata Provider
Methods
CRAYFISH AND MINNOW TRAPS There have been introductions of exotic crayfish species in recent years into many north temperate lakes. Monitoring yearly abundances of crayfish species is important in determining the status and extent of the invasions.Crayfish traps are set on all lakes except the bog lakes (Crystal Bog and Trout Bog). Minnow traps are set only on the bog lakes. Prior to 1998, five traps were set at each fyke net site. Starting in 1998, three traps are set per site. Thus, prior to 1998, thirty traps were set on each lake (covering 6 sites.) As of 1998, 18 traps are set on each lake.Minnow traps and crayfish traps are set in shallow water (approx 1 m), 2 traps on one side, and 1 trap on the other side of the fyke net lead. Minnow traps are baited with 1 slice of bread per trap to attract minnows inhabiting the bogs. Crayfish traps are baited with 120 g of liver. Traps are fished for approximately 24 hours . Crayfish are identified to species and returned to the lake, except 2001 - 2008 when in Sparkling lake Rusty Crayfish (Orconectes rusticus) was removed. Minnows caught in either the crayfish or minnow traps are identified to species, measured for total length.Minnow traps used are galvanized steel two piece traps, 44.5 cm long by 30.5 cm maximum diameter with 2.5 cm diameter openings at the ends. The mesh size is 6.4 mm on a side. Crayfish traps are identical, but the opening hole of both sides of the trap has been forced to 5 to 7 cm.
Publication Date
Short Name
NTLCR01
Version Number
29

Biocomplexity at North Temperate Lakes LTER; Whole Lake Manipulations: Exotic Crayfish Removal 2001 - 2019

Abstract
As part of a whole-lake experiment to overexploit a rusty crayfish (O. rusticus) population in Sparkling Lake, Vilas County, Wisconsin, crayfish were intensively trapped and removed from the lake from early to mid June through late August starting from 2001through 2008. From 2001 to 2004, removal traps were concentrated on the southern and western shorelines of the lake, where cobble is prevalent and catch rates were highest. Starting in 2005, additional traps were used and trapping effort was spread around the entire perimeter of the lake. Additional traps (perimeter) were set on standard arrays at 43 sites around the lake at 1 m deep from 2001 through 2006. In 2001 and 2003, traps (depth transect) were also set on standard arrays that ranged from 0.5 to 12 m deep. From 2001-2004, trap_site corresponds to one of the 43 standard sites where the trap was set. For perimeter and depth transect trapping, one trap is set at a trap site. During the removal trapping, 10 traps are set at each of the standard trapping sites. The trap_id identifier contains more information about the spatial location of a removal trap. From 2005-2008, traps were numbered sequentially moving clockwise around the lake starting at site 1, with no reference to standard trapping sites from previous years. In 2009, traps were set at the 43 standard sites. Capture data were recorded starting in 2009 but crayfish were not removed. Daily catch statistics: The data table Crayfish Daily Capture Summary provides the number of each species captured each day in the perimeter and removal traps. Also included are data on the number of traps pulled on that day and the number of trap_days these traps represent. These data can be used to calculate capture rates. The data table Crayfish Daily Capture by Station has daily catch statistics at the capture site level. Crayfish length measurements: Prior to 2005, a crayfish that was measured could be associated with the specific trap in which it was captured. These length data are included in the Crayfish Individual data table. Starting in 2005, carapace measurements were only taken on 50 randomly selected O. rusticus individuals each day. The data table Crayfish Carapace Length contains these data which are not associated with specific traps. Trap site locations: The data table Sparkling Lake Crayfish Trap Sites contains the location of the 43 standard crayfish trap sites. See Crayfish Removal Protocol for further explanation of TECHNIQUE and TRAP_ID fields. Number of sites: 43 trap sites Sampling Frequency: annually during summer
Dataset ID
217
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
Two approaches for trapping were used in the initial phase of this study: removal trapping and &quot;standardized surveys&quot;. Traps set for removal of rusty crayfish were concentrated in areas of the lake to maximize catch rates. In 2001, removals began on 14 August 2001 and traps were emptied daily during the last 2 weeks of August. From 2002 on, crayfish are trapped and removed from mid to late June through late August. Traps are wire mesh minnow traps with openings widened to 3.5-cm diameter. (In 2001, other traps and trapping methods were also evaluated.) Traps are baited with 4- 5 dead smelt.Removal traps were set in arrays of 10 at 10-m intervals along the 1-m depth contour, and were emptied daily during during 2001 - 2003 and every 1 to 4 days starting in 2004. Removal traps were concentrated on the southern and western shorelines of the lake where catch rates are highest from 2001-2004. From 2005-2008, traps were set around the entire perimeter of the lake. From 2001 to 2004 the sex of each crayfish in a trap was recorded, and a randomly selected subsample of the daily crayfish catch was used to estimate mean size. From 2005-2008, the number of crayfish in each trap was recorded, and a randomly selected subsample of 50 individuals was measured and their sex was determined.To assess the environmental predictors of rusty crayfish catch rates, &quot;standardized surveys&quot; were conducted prior to harvest in 2001 through 2006. Standardized surveys were comprised of perimeter trapping and depth trapping. Although perimeter trapping occurred every year, depth trapping only took place in 2001 and 2003. For perimeter trapping, 43 traps were baited with 120 g of beef liver and set for 24 hours at 1-m depths at 100-m intervals along the shoreline. Perimeter traps were set on 6 dates in June through August. Three days after the June and July perimeter trapping events, 14 depth transects were set around the perimeter of the lake. Depth transects were spaced 300-m apart and along the transect, traps were set at 0.5, 3, 5, 8 and 12-m depths. Perimeter trapping at the 43 sites, but not the associated depth transect trapping, was done on four dates in 2002 and continued to be done for three to five dates annually through 2006.Trap_id: During removal trapping, from 2001-2004 10 traps were set at each of the standard trapping sites. For years 2001- 2004, the trap_id of removal traps includes additional information about the spatial location of the trap. The first number of the trap_id indicates the trap site (1 to 43) and the number after the dash identifies which trap of 10 was pulled from the site as you move clockwise around the lake. For example, trap 12-1 is at the flagpost of site 12, trap 12-5 is approximately halfway between sites 12 and 13, and trap 12-10 is just before you arrive at site 13.Starting in 2005, the removal traps are distributed equally around the lake starting at trap site 1 and proceeding in a clockwise direction. These traps are given trap_ids of sequential numbers as they are lifted. These trap_ids do not relate directly to the trap site. However, you can calculate the approximate trap site for each trap by knowing the total number of traps set over the 43 standard trap sites. In 2005, a total of 277 traps were initially set. In 2006, 220 traps were set over the 43 sites. During the initial retrieval in 2006, data were grouped for each of the 22 sets of 10 traps. To make these data comparable to the rest of the removal trap data, the crayfish represented in the grouped data were assigned randomly to individual traps within the 10 trap set. In 2007, the maximim trap_id was 269. In 2008, the maximum trap_id was 289.Removal: Traps set annually at 43 sites around the lake and fished through the trapping season. In 2002, additional single traps were set near logs and other likely places which were not in close proximity to other traps. These traps have -MIN appended to the trap number in TRAP field.Perimeter: Traps set annually (through 2006) on standard arrays at 43 sites around the lake at 1 m deep for a limited number of days. The last year perimeter traps were used was 2006.Depth Transect: Traps set on standard arrays that ranged from 0.5 to 12 m deep. Depth transects were set in 2001 and 2003 only.Lead: Traps were set at the ends of a &ldquo;lead&rdquo; made of aluminum flashing and staked to the bottom of the lake in 2001 only. Experiment was to see if the flashing would be a barrier to the crayfish, and would lead crayfish into small minnow traps. Traps were set at different depths. Leads were set at survey sites: 7, 15, and 26. (Site is indicated in the TRAP field for these traps). Traps were set at each end of the lead and along the middle, as indicated by the depth they were set.Minnow: Minnow traps set in 2001.Commercial: Experimental large box traps used only in 2001.Wik: Traps designed by Don Wik and used in 2002 only. These were square traps with trapezoid-shaped ends, and an entrance on the top of the trap.References:Hein, Catherine L., Brian M. Roth, Anthony R. Ives, and M. Jake Vander Zanden. 2006. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole lake experiment. Canadian Journal of Fisheries and Aquatic Sciences: 63 383-393Hein, Catherine L., M. J. Vander Zanden, John J. Magnuson. 2007. Invasive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshwater Biology:
Update 2021
Table biocom_crayfish_daily_station was extened by summarising 2001-2006 data from biocom_crayfish_individual. New data are added for 2011-2019
Short Name
BIOSPCR1
Version Number
10
Subscribe to invertebrate