Methods
Data were collected from two lakes, Sparkling Lake (46.008, -89.701) and Peter Lake (46.253, -89.504), both located in the northern highlands Lake District of Wisconsin and the Upper Peninsula of Michigan over a 10 day period on each lake in July and August of 2007. Refer to Van de Bogert et al. 2011 for limnological characteristics of the study lakes.Measurements of dissolved oxygen and temperature were made every 10 minutes using multiple sondes dispersed horizontally throughout the mixed-layer in the two lakes (n=35 sondes for Sparkling Lake and n=27 sondes for Peter Lake). Dissolved oxygen measurements were corrected for drift.Conductivity, temperature compensated specific conductivity, pH, and oxidation reduction potential were also measured by a subset of sensors in each lake. Of the 35 sondes in Sparkling Lake, 31 were from YSI Incorporated: 15 of model 600XLM, 14 of model 6920, and 2 of model 6600). The remaining sondes placed in Sparkling Lake were 4 D-Opto sensors, Zebra-Tech, LTD. In Peter Lake, 14 YSI model 6920 and 13 YSI model 600XLM sondes were used.Sampling locations were stratified randomly so that a variety of water depths were represented, however, a higher density of sensors were placed in the littoral rather than pelagic zone. See Van de Bogert et al. 2012 for the thermal (stratification) profile of Sparkling Lake and Peter Lake during the period of observation, and for details on how locations were classified as littoral or pelagic. In Sparkling Lake, 11 sensors were placed within the shallowest zone, 12 in the off-shore littoral, and 6 in each of the remaining two zones, for a total of 23 littoral and 12 pelagic sensors. Similarly, 15 sensors were placed in the two littoral zones, and 12 sensors in the pelagic zone.Sensors were randomly assigned locations within each of the zones using rasterized bathymetric maps of the lakes and a random number generator in Matlab. Within each lake, one pelagic sensor was placed at the deep hole which is used for routine-long term sampling.Note that in Sparkling Lake this corresponds to the location of the long-term monitoring buoy. After locations were determined, sensors were randomly assigned to each location with the exception of the four D-Opto sensor is Sparkling Lake, which are a part of larger monitoring buoys used in the NTL-LTER program. One of these was located near the deep hole of the lake while the other three were assigned to random locations along the north shore, south shore and pelagic regions of the lake. Documentation: Van de Bogert, M.C., Bade, D.L., Carpenter, S.R., Cole, J.J., Pace, M.L., Hanson, P.C., Langman, O.C., 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography 57, 1689-1700.