US Long-Term Ecological Research Network

North Temperate Lakes LTER: Chemical Limnology of Primary Study Lakes: Nutrients, pH and Carbon 1981 - current

Abstract
Parameters characterizing the nutrient chemistry of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra, and Fish) are measured at multiple depths throughout the year. These parameters include total nitrogen, total dissolved nitrogen, nitrite+nitrate-N, ammonium-N, total phosphorus, total dissolved phosphorus, dissolved reactive phosphorus (only in the southern lakes and not in Wingra and Fish after 2003), bicarbonate-reactive filtered and unfiltered silica (both discontinued in 2003), dissolved reactive silica, pH, air equilibrated pH (discontinued in 2014 in the northern lakes and in 2020 in the southern lakes), total alkalinity, total inorganic carbon, dissolved inorganic carbon, total organic carbon, dissolved organic carbon, and total particulate matter (only in the northern lakes in this data set; total particulate matter in southern lakes starting in 2000 is available in a separate dataset). Sampling Frequency: Northern lakes- monthly during ice-free season -- every 5 weeks during ice-covered season. Southern lakes- Southern lakes samples are collected every 2-4 weeks during the summer stratified period, at least monthly during the fall, and typically only once during the winter, depending on ice conditions. Number of sites: 11
Dataset ID
1
Date Range
-
DOI
10.6073/pasta/cc6f0e4d317d29200234c7243471472a
Maintenance
ongoing
Metadata Provider
Methods
Inorganic and organic carbon: Samples for inorganic and organic carbon are collected together with a peristaltic pump and tubing and in-line filtered, if necessary, (through a 0.40 micron polycarbonate filter) into glass, 24 ml vials (that are compatible with the carbon analyzer autosampler), and capped with septa, leaving no head space. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2-3 weeks. The detection limit for inorganic carbon is 0.15 ppm, and the analytical range for the method is 60 ppm. The detection limit for organic carbon is 0.30 ppm and the analytical range for the method is 30 ppm. Method Log: Prior to May 2006 samples, inorganic carbon was analyzed by phosphoric acid addition on an OI Model 700 Carbon Analyzer. From May 2006 to present, inorganic carbon is still analyzed by phosphoric acid addition, but on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Method Log: Prior to May 2006 samples, organic carbon was analyzed by heated persulfate digestion on an OI Model 700 Carbon Analyzer. From May 2006 to present, Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Dissolved reactive silica Samples for silica are collected with a peristaltic pump and tubing and in-line filtered (through a 45 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm. The detection limit for silica is 6 ppb and the analytical range is 15000 ppb. Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silica was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer. total and dissolved nitrogen and phosphorus Samples for total and dissolved nitrogen and phosphorus analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 45 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. The samples must first be prepared for analysis by adding an NaOH–Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave. The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm. The detection limit for total and dissolved nitrogen is approximately 21 ppb and the analytical range for the method extends to 2500 ppb. The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb. Method Log: Prior to January 2006 samples, total nitrogen was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total nitrogen is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.
Short Name
NTLCH01
Version Number
52

Little Rock Lake Experiment at North Temperate Lakes LTER: Nutrients 1996 - 2000

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. Parameters characterizing the nutrient chemistry of the treatment and reference basins of Little Rock Lake are measured at one station in the deepest part of each basin at the top and bottom of the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. These parameters include total nitrogen, total dissolved nitrogen, nitrate, ammonia, total phosphorus, total dissolved phosphorus, dissolved reactive phosphorus, bicarbonite-reactive filtered and unfiltered silica, dissolved reactive silica, total inorganic carbon, dissolved inorganic carbon, total organic carbon, dissolved organic carbon, and total particulate matter. Sampling Frequency: varies - Number of sites: 2
Dataset ID
246
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Inorganic and organic carbonSamples for inorganic and organic carbon are collected together with a peristaltic pump and tubing and in-line filtered, if necessary, (through a 0.40 micron polycarbonate filter) into glass, 24 ml vials (that are compatible with the carbon analyzer autosampler), and capped with septa, leaving no head space. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2-3 weeks.The detection limit for inorganic carbon is 0.15 ppm, and the analytical range for the method is 60 ppm.The detection limit for organic carbon is 0.30 ppm and the analytical range for the method is 30 ppm.Method Log: Prior to May 2006 samples, inorganic carbon was analyzed by phosphoric acid addition on an OI Model 700 Carbon Analyzer. From May 2006 to present, inorganic carbon is still analyzed by phosphoric acid addition, but on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.Method Log: Prior to May 2006 samples, organic carbon was analyzed by heated persulfate digestion on an OI Model 700 Carbon Analyzer. From May 2006 to present, Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.Dissolved reactive siliconSamples for silicon are collected with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm.The detection limit for silicon is 6 ppb and the analytical range is 15000 ppb.Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silicon was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer.total and dissolved nitrogen and phosphorusSamples for total and dissolved nitrogen and phosphorus analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.The samples must first be prepared for analysis by adding an NaOH–Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave.The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm.The detection limit for total and dissolved nitrogen is approximately 21 ppb and the analytical range for the method extends to 2500 ppb.The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb.Method Log: Prior to January 2006 samples, total nitrogen was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total nitrogen is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.
Short Name
LRNUTR1
Version Number
4

Landscape Position Project at North Temperate Lakes LTER: Chemical Limnology 1998 - 2000

Abstract
Parameters characterizing the chemical limnology and spatial attributes of 51 lakes were surveyed as part of the Landscape Position Project. Parameters are measured at or close to the deepest part of the lake. The following parameters are measured one meter from the surface and two meters from the bottom of the lake: pH, total phosphorus, total nitrogen, total silica. The following parameters are measured one meter from the surface: dissolved organic carbon, total organic carbon, dissolved inorganic carbon, total inorganic carbon, spectrophotometric absorbance (color scan), major anions and cations, alkalinity. Sampling Frequency: once for conservative parameters (major ions, carbon, color, alkalinity); monthly for one summer for other parameters (chlorophyll, nitrogen, phosphorus, pH, silica, temperature, dissolved oxygen, and conductivity) Number of sites: 51Allequash Lake, Anderson Lake, Arrowhead Lake, Beaver Lake, Big Lake, Big Crooked Lake, Big Gibson Lake, Big Muskellunge Lake, Boulder Lake, Brandy Lake, Crampton Lake, Crystal Lake, Diamond Lake, Flora Lake, Heart Lake, Ike Walton Lake, Island Lake, Johnson Lake, Katherine Lake, Kathleen Lake, Katinka Lake, Lehto Lake, Little Crooked Lake, Little Muskie, Little Spider Lake, Little Sugarbush Lake, Little Trout Lake, Lower Kaubeshine Lake, Lynx Lake, McCullough Lake, Mid Lake, Minocqua Lake, Muskesin Lake, Nixon Lake, Partridge Lake, Randall Lake, Round Lake, Sanford Lake, Sparkling Lake, Statenaker Lake, Stearns Lake, Tomahawk Lake, Trout Lake, Upper Kaubeshine Lake, Verna Lake, Ward Lake, White Birch Lake, White Sand Lake, Wild Rice Lake, Wildcat Lake, Wolf Lake, Vilas County, WI, Iron County, WI, Oneida County, WI, Gogebic County, MI, USA
Dataset ID
91
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Chloride, SulfateSamples for chloride and sulfate are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 6 months. The samples are analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent.The detection limit for chloride is approximately 0.01 ppm and the analytical range for the method extends to 100 ppm.The detection limit for sulfate is approximately 0.01 ppm and the analytical range for the method extends to 60 ppm.Method Log: Prior to January 1998 samples, chloride was determined on a Dionex DX10 Ion Chromatograph, using a chemical fiber suppressor. From 1998 to 2011, chloride was determined by a Dionex model DX500, using an electro-chemical suppressor. From January 2011 until present, chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor.Calcium, silicon, magnesium, sodium, potassium, iron, and manganeseSamples for calcium analysis (as well as dissolved nitrogen and phosphorus, silicon, magnesium, sodium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.Calcium, as well as magnesium, sodium, potassium, iron, and manganese are analyzed simultaneously on an optical inductively-coupled plasma emission spectrophotometer (ICP-OES). The acidified samples are directly aspirated into the instrument without a digestion. Calcium is analyzed at 317.933 nm and at 315.887 nm and viewed axially for low-level analysis and radially for high level analysis.The detection limit for calcium is 0.06 ppm with an analytical range of the method extends to 50 ppm.The detection limit for iron is 0.02 ppm with an analytical range of the method extends to 20 ppm.The detection limit for magnesium is 0.03 ppm with an analytical range of the method extends to 50 ppm.The detection limit for manganese is 0.01 ppm with an analytical range of the method extends to 2 ppm.The detection limit for potassium is 0.06 ppm with an analytical range of the method extends to 10 ppm.The detection limit for sodium is 0.06 ppm with an analytical range of the method extends to 50 ppm.Method Log: Prior to January 2002, Calcium, magnesium, sodium, potassium, iron, and manganese were determined on a Perkin-Elmer model 503 Atomic Absorption Spectrophotometer. Lanthanum at a 0.8percent concentration was added as a matrix modifier to suppress chemical interferences. From January 2002 to present, samples are analyzed for calcium on a Perkin-Elmer model 4300 DV ICP.Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm.The detection limit for silicon is 6 ppb and the analytical range is 15000 ppb.Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silicon was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer.
Short Name
LPPCHEM1
Version Number
9

Lake Wingra Exclosure Experiment at North Temperate Lakes LTER: Nutrients 2005 - 2008

Abstract
Starting in late summer 2005, Wisconsin Dept of Natural Resources (WDNR), Dane County, Friends of Lake Wingra (FOLW), and NTL-LTER initiated a 3-year experiment in Lake Wingra to test the response of the native macrophyte community to clearer water produced from a major carp reduction program. This demonstration-scale experiment includes the construction of a 1.0-hectare rectangular carp exclosure with its solid vinyl walls extending from the lake shoreline to a water depth of 2.9 meters. NTL-LTER conducts the routine limnological monitoring of the lake and exclosure and is leading the science evaluation of potential lake restoration activities. The exclosure experiment was terminated in the fall of 2008. The exclosure was removed from Lake Wingra at that time. Sampling is done both within the exclosure and at a control site located nearby in the littoral zone. The sample location within the exclosure is equidistant from the side walls and approximately 75 meters from the shore in a water depth of approximately 2.5 meters. The control site sample location is approximately 75 meters west of the exclosure sample site at the same approximate distance from shore and water depth. Samples are taken at the same time and on the same schedule as the NTL-LTER limnological sampling on Lake Wingra, e.g., biweekly spring through summer, every 4 weeks in the fall, and once during the winter depending on ice conditions. Parameters measured within the exclosure and at the control site include water temperature, dissolved oxygen, secchi depth and chlorophyll-a. Additional parameters measured only within the exclosure include total Kjeldahl nitrogen, nitrate + nitrite nitrogen, ammonia nitrogen, total phosphorus, dissolved reactive phosphorus and dissolved reactive silica. Parameters characterizing the nutrient chemistry are measured at the surface within the exclosure in Lake Wingra. These parameters include total Kjeldahl nitrogen, nitrate + nitrite nitrogen, ammonia nitrogen, total phosphorus, dissolved reactive phosphorus and dissolved reactive silica. Total nitrogen is calculated by adding Kjeldahl nitrogen and nitrate/nitrite. Ammonia nitrogen is already included in the Kjeldahl nitrogen value. Sampling Frequency: generally bi-weekly during ice-free season from late March or early April through early September, then every 4 weeks through late November. Number of sites: 1
Core Areas
Dataset ID
191
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Samples for nitrateornitrite and ammonium are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored frozen until analysis, which should occur within 6 months. The samples are analyzed for nitrateornitrite (and ammonium) simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Nitrateornitrite is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm.The detection limit for nitrateornitrite is approximately 2 ppb and the analytical range for the method extends to 4000 ppb.Ammonium is determined by utilizing the Berthelot Reaction, producing a blue colored indophenol compound, where the absorption is monitored at 660 nm.The detection limit for ammonium is approximately 3 ppb and the analytical range for the method extends to 4000 ppb.Method Log: Prior to January 2006 samples, nitrateornitrite was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, nitrateornitrite is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.Samples for total and dissolved phosphorus and nitrogen analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.The samples must first be prepared for analysis by adding an NaOH–Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave.The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total phosphorus is determined by forming a phosphoantimonylmolybdenum complex and the absorption is monitored at 880 nm.The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb.Method Log: Prior to January 2006 samples, total phosphorus was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total phosphorus is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.
Short Name
FOLWEXNU
Version Number
7

Zooplankton of Small Lakes and Wetland Ponds in Wisconsin - North Temperate Lakes LTER 1996

Abstract
We sampled zooplankton communities from 54 small water bodies distributed throughout Wisconsin to evaluate whether a snap-shot of zooplankton community structure during early spring could be used for the purpose of differentiating lakes from wetlands. We collected a single set of zooplankton and water chemistry data during a one-month time window (synchronized from south to north across the state) from an open water site in each basin as a means to minimize and standardize sampling effort and to minimize cascading effects arising from predator-prey interactions with resident and immigrant aquatic insect communities. We identified 53 taxa of zooplankton from 54 sites sampled across Wisconsin. There was an average of 6.83 taxa per site. The zooplankton species were distributed with a great deal of independence. We did not detect significant correlations between number of taxa and geographic region or waterbody size. There was a significant inverse correlation between number of taxa and the concentration of calcium ion, alkalinity and conductivity. One pair of taxa, Lynceus brachyurus and Chaoborus americanus, showed a significant difference in average duration of sites of their respective occurrence. All other pairs of taxa had no significant difference in average latitude, waterbody surface area, total phosphorus, total Kjeldahl nitrogen, alkalinity, conductivity, calcium ion, sulfate, nitrate, silicate or chloride. Taxa were distributed at random among the sites - there were no statistically significant pairs of taxa occurring together or avoiding each other. Multivariate analysis of zooplankton associations showed no evidence of distinct associations that could be used to distinguish lakes from wetlands. Zooplankton community structure appears to be a poor tool for distinguishing between lakes and wetlands, especially at the relatively large scale of Wisconsin (dimension of about 500 km). The data suggest that a small body of water in Wisconsin could be classified as a wetland if it persists in the spring and summer for only about 4 months, and if it is inhabited by Lynceus brachyurus, Eubranchipus bundyi, and if Chaoborus americanus and Chydorus brevilabris are absent. Schell, Jeffery M., Carlos J. Santos-Flores, Paula E. Allen, Brian M. Hunker, Scott Kloehn, Aaron Michelson, Richard A. Lillie, and Stanley I. Dodson. 2001. Physical-chemical influences on vernal zooplankton community structure in small lakes and wetlands of Wisconsin, U.S.A. Hydrobiologia 445:37-50 Number of sites: 54
Creator
Dataset ID
224
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Schell, Jeffery M., Carlos J. Santos-Flores, Paula E. Allen, Brian M. Hunker, Scott Kloehn, Aaron Michelson, Richard A. Lillie, and Stanley I. Dodson. 2001. Physical-chemical influences on vernal zooplankton community structure in small lakes and wetlands of Wisconsin, U.S.A. Hydrobiologia 445:37-50
Short Name
DODSON3
Version Number
25

Biocomplexity at North Temperate Lakes LTER; Coordinated Field Studies: Chemical Limnology 2001 - 2004

Abstract
Chemical Limnology data collected for Biocomplexity Project; Landscape Context - Coordinated Field Studies Replicate chemical samples were pumped from the surface water (0.5m depth) and secchi depth was recorded at each lake. Temperature/dissolved oxygen profiles were taken throughout the water column at one meter intervals on all lakes. For more detail see the Water Sampling Protocol. Sampling Frequency: During 2001, temperature/dissolved oxygen profiles and secchi depths were taken twice during the stratified summer period. Chemistry samples were only taken once during the 2001 stratified period. From 2002 through 2004, all chemical and physical water samples were taken once during June (or resampled during the stratified period if June samples were bad). All lakes in which color, DIC/DOC, and chlorophyll samples were taken in 2001 were resampled in 2002 due to error in collection and/or analysis. Number of sites: 62 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year).
Dataset ID
41
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Environmental Sampling and Analysis: Physical, chemical and biological samples were taken above the deepest point in each lake during the summer stratification period (June, July, or August). Water samples were collected from one half meter depth using a peristaltic pump, and were analyzed for pH, alkalinity, specific conductance, water color, chlorophyll-a, dissolved organic and inorganic carbon, total phosphorus, and total nitrogen (Appendix Table 1). Secchi depth, temperature and dissolved oxygen profiles, and vertical plankton tows were also taken at the deepest point. Temperature and dissolved oxygen concentrations (DO) were measured through the water column at 1 meter increments.. Conductivity, TP-TN, alkalinity and pH water samples were collected unfiltered while water for DIC-DOC and color water samples was filtered through nucleopore polycarbonate filters. Alkalinity, pH, and DIC-DOC samples were filled to the top and sealed quickly to prevent CO2 loss or invasion. Samples containing air bubbles were recollected. Chlorophyll samples were collected on glass fiber filters in the field. Water chemistry and chlorophyll a analyses were done at the Trout Lake Biological Station, Boulder Junction, WI except for TP, TN, DIC and DOC samples, which were analyzed at the Center for Limnology-Lake Mendota Laboratory, Madison, WI.
NTL Keyword
Short Name
BIOCHEM1
Version Number
7

Historical Birge - Juday Lake Survey 1900 - 1943

Abstract
Data collected by Birge, Juday, and collaborators, mostly in north-central Wisconsin, from 1900 through 1943; generally one sampling event per lake during the summer, but on some lakes, especially around Trout Lake Station, several sampling events for several successive years. This data set contains both surface data (depth of zero) and multi-depth data. Note that not all variables were measured on all lakes. Documentation: Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).Wisconsin DNR Technical Report. Note: Values of -99999 in water quality data indicate trace amount of parameter was present. Number of sites: 663 (generally one sampling point per lake; occasionally, several sampling points per lake on multibasin, large lakes). Note: This data set was updated in 2013 to include multi-depth and additional surface data for a large subset of lakes. These additions expanded the number of sites from 605 to 663, and expanded the date range from 1925-1942 to 1900-1943 . Furthermore, 14 lakes in Minnesota were added to the data set contributing additional surface and multi-depth data. Another dataset was added in 2013 collected by Wisconsin limnologists Chauncey Juday and Edward Birge, this data set contains variables that are still commonly used in research. For example, temperature, dissolved carbon dioxide, color, pH, secchi disk, plankton, and silica. However, the data set also includes variables that are not commonly used, for example, crude protein, non-amino nitrogen, ether extract, and total organic and inorganic material. These data are characteristic of water chemistry analysis from the time in which they were compiled (5/31/1915 - 8/29/1938). The data set features data from 586 different lakes, primarily lakes in the Northern Highland Lakes District of Wisconsin. However, there is also data from lakes in southeastern and southcentral Wisconsin. Furthermore, there is a minimal amount of data from lakes in Minnesota, Ohio,New York, Alaska, the Philippines, and the United Kingdom. Documentation:Birge, E.A., and Juday, C. 1922. The inland lakes of Wisconsin. The Plankton I. Its quantity and chemical composition. Bulletin, Wis. Geol. and Nat. Hist. Survey No. 64: (Scientific series 13), ix-222.
Core Areas
Dataset ID
106
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).Wisconsin DNR Technical Report.Methods not included in Johnson (1984):Nitrite Nitrogen- Sulphanilic acid procedure. Standard methods for the examination of water and sewage, Pub. Health Assn., New York, 5th edition, 1923, 13. Other Documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Ferric Ion- First calculated by subtracting ferrous ion from total iron measurements. Standard methods of water analysis. 1936. Amer. Pub. Health Assoc. P. 309. New York. Procedure was modified to determine ferric ion by acidifying samples by adding 1 milliliter of 3 N HCL to 50mL of lake water. With the iron samples in readiness, add 5 ml of the thiocyanate solution to the sample and to the standards, mix and compare immediately. (Standard Methods, Amer. Public Health Assoc. 8th ed., p. 75, 1936). Other documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Ferrous Ion- First calculated by ferricyanide method. Procedure was modified to determine ferrous ion by subtracting ferric ion from total iron. Documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Manganese- Determined by the persulfate method using the procedure described in Standard Methods of Water Analysis, Amer. Public Health Assoc., p. 84, 1936.Chlorophyll-a- A photometric method was used, in which the color of the light was confined to the wave-length 6200-6800 A which are absorbed by chlorophyll. Water samples of 5 to 15 liters (18 liters in the case of very low plankton content) were taken from different depths by using a hand operated vacuum pump), the water was the centrifuged at 25,000 rpm (for about 30 minutes). Residue was then washed with 98percent acetone, and CaCO3 was added to neutralize organic acids. This residue-acetone mixture was ground to extract the chlorophyll. The acetone extract was then filtered through filter paper into a flask, the residue being thoroughly washed with pure acetone. The light absorption of the extract was then measured. Procedure was carried out in a single day, under minimal light. Documentation: Kemmerer, G.I., and Hallett, L.T. 1938. Amount and distribution of the chlorophyll in some lakes of northeastern Wisconsin. Trans. Wisconsin Acad. Sci. 31: 411-438.Phosphate- Ceruleomolybdic method employed. Documentation: Juday, C., Birge, E.A., Kemmerer, G.I., Robinson, R.J. 1927. Phosphorus content of lake waters of northeastern Wisconsin. Trans. Wisconsin. Acad. Sci. 23: 233-248. Other Documentation: Robinson, R.J., Kemmerer, G.I. 1930. Determination of organic phosphorus in lake waters. Trans. Wisconsin. Acad. Sci. 25: 117-121.Redox Potential- Determined in situ on a given sampling date by use of a bright platinum electrode. Eh readings were made in millivolts. Documentation: Allgeier, R.J., Hafford, B.C., and Juday, C. 1941. Oxidation-reduction potentials and pH of lake waters and lake sediments. Trans. Wisconsin Acad. Sci. 33: 115-133.Note: The methodology used to determine copper, alumnium, boron, and hydrogen sulfide could not be determined.
Short Name
RGBIJD
Version Number
7

EPA Eastern Lake Survey original data for the Upper Midwest Region 1984

Abstract
Overton, W. S., P. Kanciruk, L. A. Hook, J. M. Eilers, D. H. Landers, D. F. BRAKKE, R. A. Linthurst, and M. D. DeHaan. 1986. Characteristics of lakes in the Eastern United States. Vol. 2. Lakes sampled and descriptive statistics for physical and chemical variables. US EPA 600/4-86/007B. 369 p. The Eastern Lake Survey-Phase I (ELS-I), conducted in the fall of 1984, was the first part of a long-term effort by the U.S. Environmental Protection Agency known as the National Surface Water Survey. It was designed to synoptically quantify the acid-base status of surface waters in the United States in areas expected to exhibit low buffering capacity. The effort was in support of the National Acid Precipitation Assessment Program (NAPAP). The survey involved a three-month field effort in which 1612 probability sample lakes and 186 special interest lakes in the northeast, southeast, and upper midwest regions of the United States were sampled. This dataset includes data on 592 lakes in Michigan, Minnesota and Wisconsin. Number of sites: 592
Core Areas
Creator
Dataset ID
107
Date Range
-
Maintenance
completed
Metadata Provider
Methods
please see methods description in abstract
Short Name
RGELS
Version Number
4

Environmental Research Lab-Duluth Chemical Lake Survey 1979 - 1982

Abstract
Chemical survey of 832 lakes in Minnesota, Michigan, Wisconsin and Ontario conducted by ERL-Duluth and UMD between 1979 and 1982 for evaluation of trophic state and sensitivity to acid deposition Glass, G.E. and Sorenson, J.A. (1994) USEPA ERLD-UMD acid deposition gradient-susceptibility database. U.S. EPA Environmental Research Laboratory - Duluth and University of Minnesota at Duluth, MN. Number of sites: 856 within 832 lakes
Core Areas
Dataset ID
101
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Methods are published in Glass, G.E. and Sorenson, J.A. (1994) USEPA ERLD-UMD acid deposition gradient-susceptibility database. U.S. EPA Environmental Research Laboratory - Duluth and University of Minnesota at Duluth, MN.
Short Name
RGERLD
Version Number
6
Subscribe to total nitrogen