US Long-Term Ecological Research Network

LTREB Lake Myvatn Predation experiments at Myvatn, Iceland during 2009 and 2011

Abstract
Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species leading to positive or negative indirect effects. In some cases, indirect effects may occur when prey move into a habitat, such as when riparian predator populations grow in response to adult aquatic insects and increase predation on terrestrial prey. However, predators could instead switch to aquatic insects or become satiated, reducing predation on terrestrial prey. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, we conducted a field experiment using enclosures on the shoreline of an Icelandic lake with numerous aquatic midges. Midge abundance and wolf spider density were altered to mimic midge influx and a wolf spider numerical response. At all predator densities, the presence of midges decreased rates of predation on terrestrial prey. When midges were absent, predation was 30percent greater at high spider density. But when midges were present, predation of sentinel prey was equal across spider densities, negating the influence of increased predator density. In lab mesocosms, prey survivorship increased greater or equal 50percent where midges were present and rapidly saturated; the addition of 5, 20, 50 and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. Our results demonstrate a strong positive indirect effect of midges, and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator-mediated indirect effects.
Contact
Dataset ID
310
Date Range
-
Metadata Provider
Methods
Study SystemWe examined the potential indirect effect of aquatic insects on terrestrial arthropods at Lake Myvatn in northeast Iceland (65degree36 N, 17degree00 W). Lake Myvatn is a large, shallow lake (mean depth 3 m) within a geologically active region in northeastern Iceland (Thorarinsson 1979) whose subsurface springs rich in nutrients combine with the shallow water and long day lengths to promote high algal productivity (Einarsson et al. 2004, Thorbergsdottir and Gislason 2004). This primary production supports large populations of aquatic insects, primarily chironomid midges (Diptera: Chironomidae; (Lindegaard and Jónasson 1979). After emerging from the water as adults, midges congregate in large swarms over land near shore to mate. Lake Myvatn is historically known to produce abundant midge populations (Lindegaard and Jónasson 1979, Einarsson et al. 2002), and midge density varies throughout the summer season with peaks around late May and late July (Einarsson et al. 2002, Dreyer et al. 2015). On land, terrestrial arthropod predators, including wolf spiders in the genus Pardosa, consume midges (Gratton et al. 2008) and spider abundance is higher where midges are more common (Gratton et al. 2008, Dreyer et al. 2012).
Version Number
18

LTREB Biological Limnology at Lake Myvatn 2012-current

Abstract
These data are part of a long-term monitoring program in the central part of Myvatn that represents the dominant habitat, with benthos consisting of diatomaceous ooze. The program was designed to characterize import benthis and pelagic variables across years as midge populations varied in abundance. Starting in 2012 samples were taken at roughly weekly inervals during June, July, and August, which corresponds to the summer generation of the dominant midge,<em>Tanytarsus gracilentus</em>.
Creator
Dataset ID
296
Date Range
-
Maintenance
Ongoing
Metadata Provider
Methods
Benthic Chlorophyll Field sampling (5 samples) (2012, 2013)1. Take 5 cores from the lake2. Cut the first 0.75 cm (1 chip) of the core with the extruder and place in deli container. Label with date and core number.3. Place deli containers into opaque container (cooler) and return to lab. This is the same sample that is used for the organic matter analysis.In 2014, the method for sampling benthic chlorophyll changed. The calculation of chlorophyll was changed to reflect the different area sampled. Below is the pertinent section from the methods protocols. Processing after the collection of the sample was not changed.Take sediment samples from the 5 cores collected for sediment characteristics. Take 4 syringes of sediment with 10mL syringe (15.96mm diameter). Take 4-5cm of sediment. Then, remove bottom 2cm and place top 2cm in the film canister.Filtering1. Measure volume of material in deli container with 60mL syringe and record.2. Homogenize and take 1mL sample with micropipette. The tip on the micropipette should be cut to avoid clogging with diatoms. Place the 1mL sample in a labeled film canister. Freeze sample at negative 20 degrees Celsius unless starting methanol extraction immediately.3. Add 20mL methanol. This methanol can be kept cool in the fridge, although then you will need a second bottle of methanol for the fluorometer. Shake for 5 sec.4. After 6-18 hours, shake container for 5 sec.Fluorometer1. Allow the film canisters to sit at room temperature for approximately 15 min to avoid excessive condensation on the glass tubes. Shake tubes for 5 sec after removing from fridge but then be careful to let them settle before removing sample.2. Record the sample information for all of the film canisters on the data sheet.3. Add 4mL of sample to a 13x100mL glass tube.4. Insert the sample into the fluorometer and record the reading in the Fluor Before Acid column. The sample reading should be close to one of the secondary solid standards (42ug/L or 230ug/L), if not, dilute the sample to within 25 per cent of the secondary solid standards (30-54ug/L or 180-280ug/L). It is a good idea to quickly check 2mL of a sample that is suspected to be too high to get an idea if other samples may need to be diluted. If possible, read the samples undiluted.5. If a sample needs to be diluted, use a 1000 microLiter pipette and add 2mL of methanol to a tube followed by 2mL of undiluted sample. Gently invert the tube twice and clean the bottom with a paper towel before inserting it into the fluorometer. If the sample is still outside of the ranges above, combine 1 mL of undiluted sample with 3 mL of methanol. Be sure to record the dilution information on the data sheet.6. Acidify the sample by adding 120microLiters of 0.1 N HCl (30microLiters for every one mL of sample). Then gently invert the sample and wait 90 seconds (we used 60 seconds in 2012, the protocol said 90) before putting the sample into the fluorometer and recording the reading in the Fluor After Acid column. Be sure to have acid in each tube for exactly the same amount of time. This means doing one tube at a time or spacing them 30-60 seconds apart.7. Double check the results and redo samples, which have suspicious numbers. Make sure that the after-acidification values make sense when compared to the before acidification value (the before acid/after acid ratio should be approximately the same for all samples).Clean up1. Methanol can be disposed of down the drain as long as at least 50 times as much water is flushed.2. Rinse the film canisters and lids well with tap water and scrub them out with a bottle brush making sure to remove any remaining filter paper. Give a final rinse with distilled water. Pelagic Chlorophyll Field sampling (5 samples)1. Take 2 samples at each of three depths, 1, 2, and 3m with Arni&rsquo;s zooplankton trap. For the 1m sample, drop the trap to the top of the chain. Each trap contains about 2.5L of water when full. 2. Empty into bucket by opening the bottom flap with your hand.3. Take bucket to lab.Filtering1. Filter 1L water from integrated water sample (or until the filter is clogged) through the 47 mm GF/F filter. The pressure used during filtering should be low ( less than 5 mm Hg) to prevent cell breakage. Filtering and handling of filters should be performed under dimmed lighting.2. Remove the filter with forceps, fold it in half (pigment side in), and put it in the film canister. Take care to not touch the pigments with the forceps.3. Add 20mL methanol. This methanol can be kept cool in the fridge, although then you will need a second bottle of methanol for the fluorometer. Shake for 5 sec. and place in fridge.4. After 6-18 hours, shake container for 5 sec.5. Analyze sample in fluorometer after 24 hours.Fluorometer1. Allow the film canisters to sit at room temperature for approximately 15 min to avoid excessive condensation on the glass tubes. Shake tubes for 5 sec after removing from fridge but then be careful to let them settle before removing sample.2. Record the sample information for all of the film canisters on the data sheet.3. Add 4mL of sample to a 13x100mL glass tube.4. Insert the sample into the fluorometer and record the reading in the Fluor Before Acid column. The sample reading should be close to one of the secondary solid standards (42ug/L or 230ug/L), if not, dilute the sample to within 25 percent of the secondary solid standards (30-54ug/L or 180-280ug/L). It is a good idea to quickly check 2mL of a sample that is suspected to be too high to get an idea if other samples may need to be diluted. If possible, read the samples undiluted.5. If a sample needs to be diluted, use a 1000uL pipette and add 2mL of methanol to a tube followed by 2mL of undiluted sample. Gently invert the tube twice and clean the bottom with a paper towel before inserting it into the fluorometer. If the sample is still outside of the ranges above, combine 1 mL of undiluted sample with 3 mL of methanol. Be sure to record the dilution information on the data sheet.6. Acidify the sample by adding 120 microLiters of 0.1 N HCl (30 microLiters for every one mL of sample). Then gently invert the sample and wait 90 seconds (we used 60 seconds in 2012, the protocol said 90) before putting the sample into the fluorometer and recording the reading in the Fluor After Acid column. Be sure to have acid in each tube for exactly the same amount of time. This means doing one tube at a time or spacing them 30-60 seconds apart.7. Double check the results and redo samples, which have suspicious numbers. Make sure that the after-acidification values make sense when compared to the before acidification value (the before acid/after acid ratio should be approximately the same for all samples).Clean up1. Methanol can be disposed of down the drain as long as at least 50 times as much water is flushed.2. Rinse the film canisters and lids well with tap water and scrub them out with a bottle brush making sure to remove any remaining filter paper. Give a final rinse with distilled water. Pelagic Zooplankton Counts Field samplingUse Arni&rsquo;s zooplankton trap (modified Schindler) to take 2 samples at each of 1, 2, and 3m (6 total). For the 1m sample, drop the trap to the top of the chain. Each trap contains about 2.5L of water when full. Integrate samples in bucket and bring back to lab for further processing.Sample preparation in lab1. Sieve integrated plankton tows through 63&micro;m mesh and record volume of full sample2. Collect in Nalgene bottles and make total volume to 50mL3. Add 8 drops of lugol to fix zooplankton.4. Label bottle with sample date, benthic or pelagic zooplankton, and total volume sieved. Samples can be stored in the fridge until time of countingCounting1. Remove sample from fridge2. Sieve sample with 63 micro meter mesh over lab sink to remove Lugol&rsquo;s solution (which vaporizes under light)3. Suspend sample in water in sieve and flush from the back with squirt bottle into counting tray4. Homogenize sample with forceps or plastic pipette with tip cut off5. Identify (see zooplankton identification guide) using backlit microscope and count with multiple-tally counter. i. Set magnification so that you can see both top and bottom walls of the tray. ii. Change focus depth to check for floating zooplankton that must be counted as well.6. Pipette sample back into Nalgene bottle, add water to 50mL, add 8 drops Lugol&rsquo;s solution, and return to fridgeSubsamplingIf homogenized original sample contains more than 500 individuals in the first line of counting tray, you may subsample under the following procedure.1. Return original sample to Nalgene bottle and add water to 50mL2. Homogenize sample by swirling Nalgene bottle3. Collect 10mL of zooplankton sample with Hensen-Stempel pipette4. Empty contents of Hensen-Stempel pipette into large Bogorov tray5. Homogenize sample in tray with forceps or plastic pipette with tip cut off6. Identify (see zooplankton identification guide) using backlit microscope and count with multiple-tally counter. i. Set magnification so that you can see both top and bottom walls of the tray. ii. Change focus depth to check for floating zooplankton that must be counted, too! 7. Pipette sample back into Nalgene bottle, add water to 50mL, add 8 drops Lugol&rsquo;s solution, and return to fridge Benthic Microcrustacean Counts Field samplingLeave benthic zooplankton sampler for 24h. Benthic sampler consists of 10 inverted jars with funnel traps in metal grid with 4 feet. Set up on bench using feet (on side) to get a uniform height of the collection jars (lip of jar = 5cm above frame). Upon collection, pull sampler STRAIGHT up, remove jars, homogenize in bucket and bring back to lab. Move the boat slightly to avoid placing sampler directly over cored sediment.Sample preparation in lab1. Sieve integrated samples through 63 micrometer mesh and record volume of full sample2. Collect in Nalgene bottles and make total volume to 50mL3. Add 8 drops of lugol to fix zooplankton.4. Label bottle with sample date, benthic or pelagic zooplankton, and total volume sieved. Samples can be stored in the fridge until time of countingCounting1. Remove sample from fridge2. Sieve sample with 63 micrometer mesh over lab sink to remove Lugol&rsquo;s solution (which vaporizes under light)3. Suspend sample in water in sieve and flush from the back with squirt bottle into counting tray4. Homogenize sample with forceps or plastic pipette with tip cut off5. Identify (see zooplankton identification guide) using backlit microscope and count with multiple-tally counter. i. Set magnification so that you can see both top and bottom walls of the tray. ii. Change focus depth to check for floating zooplankton that must be counted, too!6. Pipette sample back into Nalgene bottle, add water to 50mL, add 8 drops Lugol&rsquo;s solution, and return to fridgeSubsamplingIf homogenized original sample contains more than 500 individuals in the first line of counting tray, you may subsample under the following procedure.1. Return original sample to Nalgene bottle and add water to 50mL2. Homogenize sample by swirling Nalgene bottle3. Collect 10mL of zooplankton sample with Hensen-Stempel pipette4. Empty contents of Hensen-Stempel pipette into large Bogorov tray5. Homogenize sample in tray with forceps or plastic pipette with tip cut off6. Identify (see zooplankton identification guide) using backlit microscope and count with multiple-tally counter. i. Set magnification so that you can see both top and bottom walls of the tray. ii. Change focus depth to check for floating zooplankton that must be counted, too! 7. Pipette sample back into Nalgene bottle, add water to 50mL, add 8 drops Lugol&rsquo;s solution, and return to fridge Chironomid Counts (2012, 2013) For first instar chironomids in top 1.5cm of sediment only (5 samples)1. Use sink hose to sieve sediment through 63 micrometer mesh. You may use moderate pressure to break up tubes.2. Back flush sieve contents into small deli container.3. Return label to deli cup (sticking to underside of lid works well).For later instar chironomids in the section 1.5-11.5cm (5 samples)4. Sieve with 125 micrometer mesh in the field.5. Sieve through 125micrometer mesh again in lab to reduce volume of sample.6. Transfer sample to deli container or pitfall counting tray.For all chironomid samples7. Under dissecting scope, pick through sieved contents for midge larvae. You may have to open tubes with forceps in order to check for larvae inside.8. Remove larvae with forceps while counting, and place into a vial containing 70 percent ethanol. Larvae will eventually be sorted into taxonomic groups (see key). You may sort them into taxonomic groups as you pick the larvae, or you can identify the larvae while measuring head capsules if chironomid densities are low (under 50 individuals per taxanomic group).9. For a random sample of up to 50 individuals of each taxonomic group, measure head capsule, see Chironomid size (head capsule width).10. Archive samples from each sampling date together in a single 20mL glass vial with screw cap in 70 percent ethanol and label with sample contents , Chir, sample date, lake ID, station ID, and number of cores. Chironomid Cound (2014) In 2014, the method for sampling chironomid larvae changed starting with the sample on 2014-06-27; the variable &quot;top_bottom&quot; is coded as a 2. In contrast to previous measurements, the top and bottom core samples were combined and then subsampled. Below is the pertinent section of the protocols.Chironomid samples should be counted within 24 hours of collection. This ensures that larvae are as active and easily identified as possible, and also prevents predatory chironomids from consuming other larvae. Samples should be refrigerated upon returning from the field.<strong>For first instar chironomids in top 1.5cm of sediment only (5 samples)</strong>1. Use sink hose to sieve sediment through 63&micro;m mesh. You may use moderate pressure to break up tubes.2. Back flush sieve contents using a water bottle into small deli container.3. Return label to deli cup (sticking to underside of lid works well).<strong>For larger instar chironomids in the section 1.5-11.5cm (5 samples)</strong>4. Sieve with 125&micro;m mesh in the field.5. Sieve through 125&micro;m mesh again in lab to reduce volume of sample and break up tubes.6. Transfer sample to deli container with the appropriate label.<strong>Subsample if necessary</strong>If necessary, subsample with the following protocol.a. Combine top and bottom samples from each core (1-5) in midge sample splitter.b. Homogenize sample thoroughly, collect one half in deli container, and label container with core number and &ldquo;1/2&rdquo;c. If necessary, split the half that remains in the sampler into quarters, and collect each in deli containers labeled with core number, &ldquo;1/4&rdquo;, and replicate 1 or 2d. Store all deli containers in fridge until counted, and save until all counting is complete&quot; Chironomid Size (head capsule width) 1. Obtain picked samples preserved in ethanol and empty onto petri dish.2. Sort larvae by family groups, arranging in same orientation for easy measurment.3. Set magnification to 20, diopter, x 50 times4. Take measurments for up to 50 or more individuals of each taxa. Round to nearest optical micrometer unit.5. Fill out data sheet for number of larvae in each taxa, Chironomid measurements for each taxa, date of sample, station sample was taken from, which core the sample came from, who picked the core, and your name as the measurer.6. Enter data into shared sheetSee &quot;Chironomid Counts&quot; for changes in sampling chironomid larvae in 2014.
Version Number
17
Subscribe to predators