US Long-Term Ecological Research Network

North Temperate Lakes LTER Regional Survey Water Chemistry 2015 - current

Abstract
The Northern Highlands Lake District (NHLD) is one of the few regions in the world with periodic comprehensive water chemistry data from hundreds of lakes spanning almost a century. Birge and Juday directed the first comprehensive assessment of water chemistry in the NHLD, sampling more than 600 lakes in the 1920s and 30s. These surveys have been repeated by various agencies and we now have data from the 1920s (UW), 1960s (WDNR), 1970s (EPA), 1980s (EPA), 1990s (EPA), and 2000s (NTL). The 28 lakes sampled as part of the Regional Lake Survey have been sampled by at least four of these regional surveys including the 1920s Birge and Juday sampling efforts. These 28 lakes were selected to represent a gradient of landscape position and shoreline development, both of which are important factors influencing social and ecological dynamics of lakes in the NHLD. This long-term regional dataset will lead to a greater understanding of whether and how large-scale drivers such as climate change and variability, lakeshore residential development, introductions of invasive species, or forest management have altered regional water chemistry. The regional lakes survey in 2015 followed the standard LTER protocol for standard water chemistry and biology. Samples were taken as close to solar noon as possible. Seven lakes had replicates performed, which were chosen at random.
Contact
Dataset ID
380
Date Range
-
Maintenance
ongoing
Methods
Inorganic and organic carbon
Inorganic carbon is analyzed by phosphoric acid addition on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.
Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.
Version Number
2

Molecular composition of dissolved organic matter in NTL-LTER lakes detected by Fourier-transform ion cyclotron resonance mass spectrometry

Abstract
The composition of dissolved organic matter (DOM) varies widely in the environment due to distinct sources of the material and subsequent processing. DOM composition drives its reactivity in terms of many processes including photochemical reactions, microbial metabolism, and carbon cycling within water bodies. This study uses ultra-high resolution mass spectrometry via a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS) to evaluate DOM composition at the molecular level to determine differences in DOM composition among the NTL-LTER lakes. Whole water samples were collected from the surface of each lake near the shore on August 18th and 19th in 2016 in. Ultraviolet-visible spectra were recorded as light absorbance can also give information about DOM composition. Additionally, concentrations of anions, cations, and pH were measured waters because these can all alter DOM reactivity in the environment. Both water chemistry and DOM composition vary widely among the lakes with the bogs displaying the most terrestrial-like signature in DOM and the oligotrophic lakes show more microbial-like or environmentally processed DOM.
Core Areas
Dataset ID
378
Date Range
-
Maintenance
comleted
Methods
Molecular Composition

Water was acidified to pH = 2 with concentrated hydrochloric acid and organic matter was extracted from the water using Agilent PPL cartridges. Extracts were diluted 100x in 50:50 acetonitrile to ultra-pure water and directly injected into a Bruker SolarX 12T Fourier-transform ion cyclotron resonance mass spectrometer. Ionization was achieved with electrospray ionization by an Advian NanoMate delivery system in both positive and negative mode.

Version Number
2

Fluxes project at North Temperate Lakes LTER: Random lake survey 2004

Abstract
The overarching goal of this project is to understand carbon and nutrient cycles for a landscape on which terrestrial and freshwater systems are intimately connected in multiple and reciprocal ways. In the Northern Highlands region of Wisconsin, they are studying a spatially complex landscape in which water features make up almost half of the land area, with wetlands (27% of land surface) and lakes (13%) both prevalent throughout the region, interspersed in upland forests.Weather and limnological data from a set of 170 lakes in the NHLD samples summer 2004. The sampled lakes were from a random stratified subsample (N=300 of 7588 total) of all the lakes in the NHLD.
Contact
Core Areas
Dataset ID
277
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Hanson PC, Carpenter S, Cardille JA, Coe MT, Winslow LA. 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology. 52:814-22Lakes were selected from unique Water Body Identification Codes (WBICs). Linear features and water bodies identified as impoundments or stream openings were identified from maps digitised by the Departments of Natural Resources of Michigan and Wisconsin (1 : 24 000 USGS 7.5’ topographic quadrangles) and were excluded. More than 7500 lakes ranging in size from about 0.01 to over 2800 ha remained in the data set. We used a stratified random survey, an approach consistent with the Environmental Monitoring and Assessment Program (EMAP) guidelines (Larsen et al., 1994) of the U.S. Environmental Protection Agency, to select and sample 300 lakes from the data set as follows. All lakes were ordered by area and divided into 20 bins of equal population. From each bin, 15 lakes were chosen at random. Because of logistical issues in travelling to many lakes scattered over a wide geographical region, we clustered lakes into 31 geographically small regions of about 150 km2 each. The order of regions sampled was randomised to reduce correlation of geographic region with time. For any one sampling date we visited only one region, although not all lakes in a region could be visited on a single trip. After all 31 regions were visited, the regions were again selected at random, and lakes previously not visited were sampled. There were 45 sampling days spread between May 20 and August 19. Some lakes that were chosen for sampling could not be visited. Difficulty portaging the sampling gear to a lake or failure to gain access to a lake through private property were reasons for abandoning a sampling effort.Lakes were sampled at their approximate geographic centre. Lake depth and water clarity were measured with a Secchi disk. Our measurement of lake depth was neither a measurement of the maximum nor the mean depth. Because the measurement was made in the middle of the lake and most lakes in the region tend to be bowl shaped, our measurement was probably between mean and maximum depth. Dissolved oxygen (DO) and thermal profiles were obtained from a YSI Model 58 (YSI, Inc., Yellow Springs, OH, U.S.A.) metre (DO air calibrated; temperature calibrated in the laboratory), and the approximate middle of the epilimnion was estimated from the profile. Thermal stratification was calculated from the thermal profile according to the methods listed on the Internet at the North Temperate Lakes Long Term Ecological Research (NTL-LTER) program Web site (http://lter.limnology.wisc.edu). Water samples for later analyses (Table 1, chemical variables) were obtained from the middle of the epilimnion, using a peristaltic pump. For samples that required filtration [dissolved inorganic carbon (DIC), DOC, cations and anions], a 0.45 μm filter was attached in-line. All samples were refrigerated upon returning to the vehicle, and samples for total nitrogen (TN) and total phosphorus (TP) were preserved by acidification. Acid neutralizing capacity (ANC) and pH were determined the day of sampling by Gran alkalinity titration (for ANC) and measurement by pH probe (Accumet 950; Fisher Scientific, Hanover Park, IL U.S.A.). pH was not air equilibrated. DIC and DOC were measured with a carbon analyzer (TOC-V; Shimadzu Scientific Instruments, Columbia, MD, U.S.A.). TN and TP were measured with a segmented flow auto-analyzer (Astoria-Pacific, Inc., Clackamas, OR, U.S.A.). Anions were measured using an ion chromatograph (DX500; Dionex Corporation, Sunnyvale, CA, U.S.A.), and cations using mass spectrometry (ICP-MS; PerkinElmer Life and Analytical Sciences, Shelton, CT, U.S.A.). Details of chemical analyses are available on the Internet at the NTL-LTER Web site listed above.To correct for bias introduced by not sampling all 300 lakes, we replaced missing data using multiple imputation (Levy, 1999). Multiple imputation is a technique for estimating the uncertainty of imputed variables. For each variable for each lake not sampled in a given bin, we chose at random (with replacement) a value from lakes sampled in that bin. We repeated the imputation 1000 times to provide a distribution of estimates for each variable in the lakes not sampled. The distribution mean for each variable in each lake was used in the calculation of the median for the regional lake population. We chose to present the median for the 300 lakes because distributions tended to be highly skewed. For comparison purposes, we also calculated the median from sampled lakes only (i.e. excluding imputed data). The mean cumulative distributions for some variables, including 95% confidence intervals, were plotted from the 1000 cumulative distributions generated by multiple imputation.We fit a Pareto distribution to the regional lake area data set to compare the size distribution of NHLD lakes with those of other regions. We used the maximum likelihood estimator for parameter estimates (Bernardo & Smith, 2000). Of particular interest is the parameter (β) that describes the logarithmic decline in number of lakes with lake area, because this parameter has been used previously (Downing et al., 2006, Table 1) to compare lake area distributions among regions and to estimate the global abundance of lakes.Where indicated, results have been area weighted to reflect the influence of lake size. For correlations, data were transformed (log10) to normalise distributions and linearise relationships. Shoreline development factor (SDF), an index of the irregular shape of lakes, was calculated for each lake according to Kalff (2002). The minimum SDF, 1, indicates a lake is a perfect circle.
NTL Keyword
Version Number
25

Trout Lake USGS Water, Energy, and Biogeochemical Budgets (WEBB) Stream Data 1975-current

Abstract
This data was collected by the United States Geological Survey (USGS) for the Water, Energy, and Biogeochemical Budget Project. The data set is primarily composed of water chemistry variables, and was collected from four USGS stream gauge stations in the Northern Highland Lake District of Wisconsin, near Trout Lake. The four USGS stream gauge stations are Allequash Creek at County Highway M (USGS-05357215), Stevenson Creek at County Highway M (USGS-05357225), North Creek at Trout Lake (USGS-05357230), and the Trout River at Trout Lake (USGS-05357245), all near Boulder Junction, Wisconsin. The project has collected stream water chemistry data for a maximum of 36 different chemical parameters,. and three different physical stream parameters: temperature, discharge, and gauge height. All water chemistry samples are collected as grab samples and sent to the USGS National Water Quality Lab in Denver, Colorado. There is historic data for Stevenson Creek from 1975-1977, and then beginning again in 1991. The Trout Lake WEBB project began during the summer of 1991 and sampling of all four sites continues to date.
Creator
Dataset ID
276
Date Range
-
Maintenance
Completed.
Metadata Provider
Methods
DL is used to represent “detection limit” where known.NOTE (1): Each method listed below corresponds with a USGS Parameter Code, which is listed after the variable name. NOTE (2): If the NEMI method # is known, it is also specified at the end of each method description.NOTE (3): Some of the variables are calculated using algorithms within QWDATA. If this is the case see Appendix D of the NWIS User’s Manual for additional information. However, appendix D does not list the algorithm used by the USGS. If a variable is calculated with an algorithm the term: algor, will be listed after the variable name.anc: 99431, Alkalinity is determined in the field by using the gran function plot methods, see TWRI Book 9 Chapter A6.1. anc_1: 90410 and 00410, Alkalinity is determined by titrating the water sample with a standard solution of a strong acid. The end point of the titration is selected as pH 4.5. See USGS TWRI 5-A1/1989, p 57, NEMI method #: I-2030-89.2. c13_c12_ratio: 82081, Exact method unknown. The following method is suspected: Automated dual inlet isotope ratio analysis with sample preparation by precipitation with ammoniacal strontium chloride solution, filtration, purification, acidified of strontium carbonate; sample size is greater than 25 micromoles of carbon; one-sigma uncertainty is approximately ± 0.1 ‰. See USGS Determination of the delta13 C of Dissolved Inorganic Carbon in Water, RSIL Lab Code 1710. Chapter 18 of Section C, Stable Isotope-Ratio Methods Book 10, Methods of the Reston Stable Isotope Laboratory.3. ca, mg, mn, na, and sr all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:ca- 00915, mg- 00925, mn- 01056, na- 00930, sr- 01080All metals are determined simultaneously on a single sample by a direct reading emission spectrometric method using an inductively coupled argon plasma as an excitation source. Samples are pumped into a crossflow pneumatic nebulizer, and introduced into the plasma through a spray chamber and torch assembly. Each analysis is determined on the basis of the average of three replicate integrations, each of which is background corrected by a spectrum shifting technique except for lithium (670.7 nm) and sodium (589.0 nm). A series of five mixed-element standards and a blank are used for calibration. Method requires an autosampler and emission spectrometry system. See USGS OF 93-125, p 101, NEMI Method #: I-1472-87.DL’s: ca- .02 mg/l, mg-.01 mg/l, mn-1.0 ug/l, na- .2 mg/l, sr- .5 ug/l4. cl, f, and so4 all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:cl- 00940, f-00950, so4-00945All three anions (chloride, flouride, and sulfate) are separated chromatographically following a single sample injection on an ion exchange column. Ions are separated on the basis of their affinity for the exchange sites of the resin. The separated anions in their acid form are measured using an electrical conductivity cell. Anions are identified on the basis of their retention times compared with known standards. 19 The peak height or area is measured and compared with an analytical curve generated from known standards to quantify the results. See USGS OF 93-125, p 19, NEMI method #: I-2057.DL’s: cl-.2 mg/l, f-.1 mg/l, so4-.2 mg/lco2: 00405, algor, see NWIS User's Manual, QW System, Appendix D, Page 285.co3: 00445, algor.color: 00080, The color of the water is compared to that of the colored glass disks that have been calibrated to correspond to the platinum-cobalt scale of Hazen (1892), See USGS TWRI 5-A1 or1989, P.191, NEMI Method #: I-1250. DL: 1 Pt-Co colorconductance_field: 00094 and 00095, specific conductance is determined in the field using a standard YSI multimeter, See USGS TWRI 9, 6.3.3.A, P. 13, NEMI method #: NFM 6.3.3.A-SW.conductance_lab: 90095, specific conductance is determined by using a wheat and one bridge in which a variable resistance is adjusted so that it is equal to the resistance of the unknown solution between platinized electrodes of a standardized conductivity cell, sample at 25 degrees celcius, See USGS TWRI 5-A1/1989, p 461, NEMI method #: I-1780-85.dic: 00691, This test method can be used to make independent measurements of IC and TC and can also determine TOC as the difference of TC and IC. The basic steps of the procedure are as follows:(1) Removal of IC, if desired, by vacuum degassing;(2) Conversion of remaining inorganic carbon to CO<sub>2</sub> by action of acid in both channels and oxidation of total carbon to CO<sub>2</sub> by action of ultraviolet (UV) radiation in the TC channel. For further information, See ASTM Standards, NEMI method #: D6317. DL: n/adkn: 00623 and 99894, Organic nitrogen compounds are reduced to the ammonium ion by digestion with sulfuric acid in the presence of mercuric sulfate, which acts as a catalyst, and potassium sulfate. The ammonium ion produced by this digestion, as well as the ammonium ion originally present, is determined by reaction with sodium salicylate, sodium nitroprusside, and sodium hypochlorite in an alkaline medium. The resulting color is directly proportional to the concentration of ammonia present, see USGS TWRI 5-A1/1989, p 327, NEMI method #: 351.2. DL: .10 mg/Ldo: 0300, Dissolved oxygen is measured in the field with a standard YSI multimeter, NEMI Method #: NFM 6.2.1-Lum. DL: 1 mg/L.doc: 00681, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS OF 92-480, NEMI Method #: O-1122-92. DL: .10 mg/L.don: 00607, algor, see NWIS User's Manual, QW System, Appendix D, page 291.dp: 00666 and 99893, All forms of phosphorus, including organic phosphorus, are converted to orthophosphate ions using reagents and reaction parameters identical to those used in the block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and mercury (II) at a temperature of 370 deg, see USGS OF Report 92-146, or USGS TWRI 5-A1/1979, p 453, NEMI method #: I-2610-91. DL= .012 mg/L.fe: 01046, Iron is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame, see USGS TWRI 5-A1/1985, NEMI method #: I-1381. DL= 10µg/L.h_ion: 00191, algor.h20_hardness: 00900, algor.h20_hardness_2: 00902, algor.hco3: 00440, algor.k: 00935, Potassium is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame , see USGS TWRI 5-A1/1989, p 393, NEMI method #: I-1630-85. DL= .01 mg/L.n_mixed: 00600, algor.n_mixed_1: 00602, algor.n_mixed_2: 71887, algor.nh3_nh4: 00608, Ammonia reacts with salicylate and hypochlorite ions in the presence of ferricyanide ions to form the salicylic acid analog of indophenol blue (Reardon and others, 1966; Patton and Crouch, 1977; Harfmann and Crouch, 1989). The resulting color is directly proportional to the concentration of ammonia present, See USGS OF 93-125, p 125/1986 (mg/l as N), NEMI Method #: I-2525. DL= .01 mg/L.nh3_nh4_1: 71846, algor.nh3_nh4_2: 00610, same method as 00608, except see USGS TWRI 5-A1/1989, p 321. DL = .01 mg/L.nh3_nh4_3: 71845, algor.no2: 00613, Nitrite ion reacts with sulfanilamide under acidic conditions to form a diazo compound which then couples with N-1-naphthylethylenediamine dihydrochloride to form a red compound, the absorbance of which is measured colorimetrically, see USGS TWRI 5-A1/1989, p 343, NEMI method #: I-2540-90. DL= .01 mg/L.no2_2: 71856, algor.no3: 00618, Nitrate is determined sequentially with six other anions by ion-exchange chromatography, see USGS TWRI 5-A1/1989, P. 339, NEMI method #: I-2057. DL= .05 mg/L.no3_2: 71851, algor.no32: 00630, An acidified sodium chloride extraction procedure is used to extract nitrate and nitrite from samples of bottom material for this determination(Jackson, 1958). Nitrate is reduced to nitrite by cadmium metal. Imidazole is used to buffer the analytical stream. The sample stream then is treated with sulfanilamide to yield a diazo compound, which couples with N-lnaphthylethylenediamine dihydrochloride to form an azo dye, the absorbance of which is measured colorimetrically. Procedure is used to extract nitrate and nitrite from bottom material for this determination (Jackson, 1958), see USGS TWRI 5-A1/1989, p 351. DL= .1 mg/Lno32_2: 00631, same as description for no32, except see USGS OF 93-125, p 157. DL= .1 mg/L.o18_o16_ratio: 82085, Sample preparation by equilibration with carbon dioxide and automated analysis; sample size is 0.1 to 2.0 milliliters of water. For 2-mL samples, the 2-sigma uncertainties of oxygen isotopic measurement results are 0.2 ‰. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. Water is extracted from soils and plants by distillation with toluene; recommended sample size is 1-5 ml water per analysis, see USGS Determination of the Determination of the delta (18 O or 16O) of Water, RSIL Lab Code 489.o2sat: Dissolved oxygen is measured in the field with a standard YSI multimeter, which also measures % oxygen saturation, NEMI Method #: NFM 6.2.1-Lum.ph_field: 00400, pH determined in situ, using a standard YSI multimeter, see USGS Techniques of Water-Resources Investigations, book 9, Chaps. A1-A9, Chap. A6.4 "pH," NEMI method # NFM 6.4.3.A-SW. DL= .01 pH.ph_lab: 00403, involves use of laboratory pH meter, see USGS TWRI 5-A1/1989, p 363, NEMI method #: I-1586.po4: 00660, algor, see NWIS User's Manual, QW System, Appendix D, Page 286.po4_2: 00671, see USGS TWRI 5-A1/1989, NEMI method #: I-2602. DL= .01 mg/L.s: 63719, cannot determine exact method used. USGS method code: 7704-34-9 is typically used to measure sulfur as a percentage, with an DL =.01 µg/L. It is known that the units for sulfur measurements in this data set are micrograms per liter.sar: 00931, algor, see NWIS User's Manual, QW System, Appendix D, Page 288.si: 00955, Silica reacts with molybdate reagent in acid media to form a yellow silicomolybdate complex. This complex is reduced by ascorbic acid to form the molybdate blue color. The silicomolybdate complex may form either as an alpha or beta polymorph or as a mixture of both. Because the two polymorphic forms have absorbance maxima at different wavelengths, the pH of the mixture is kept below 2.5, a condition that favors formation of the beta polymorph (Govett, 1961; Mullen and Riley, 1955; Strickland, 1952), see USGS TWRI 5-A1/1989, p 417, NEMI method #: I-2700-85. DL= .10 mg/L.spc: 00932, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds: 70300 and 70301, A well-mixed sample is filtered through a standard glass fiber filter. The filtrate is evaporated and dried to constant weight at 180 deg C, see " Filterable Residue by Drying Oven," NEMI method #: 160.1, DL= 10 mg/l. Note: despite DL values occur in the data set that are less than 10 mg/l.tds_1: 70301, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds_2: 70303, algor, see NWIS User's Manual, QW System, Appendix D, Page 290.tkn: 00625 and 99892, Block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and Mercury (II) at a temperature of 370°C. See the USGS Open File Report 92-146 for further details. DL: .10 mg/L.toc: 00680, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS TWRI 5-A3/1987, p 15, NEMI Method #: O-1122-92. DL=.10 mg/L.ton: 00605, algor, See NWIS User's Manual, QW System, Appendix D, page 286.tp: 00665 and 99891, This method may be used to analyze most water, wastewater, brines, and water-suspended sediment containing from 0.01 to 1.0 mg/L of phosphorus. Samples containing greater concentrations need to be diluted, see USGS TWRI 5-A1/1989, p 367, NEMI method #: I-4607. tp_2: 71886, algor.tpc: 00694, The basic steps of this test method are:1) Conversion of remaining IC to CO2 by action of acid, 2) Removal of IC, if desired, by vacuum degassing, 3) Split of flow into two streams to provide for separate IC and TC measurements, 4) Oxidation of TC to CO2 by action of acid-persulfate aided by ultraviolet (UV) radiation in the TC channel, 5) Detection of CO2 by passing each liquid stream over membranes that allow the specific passage of CO2 to high-purity water where change in conductivity is measured, and 6) Conversion of the conductivity detector signal to a display of carbon concentration in parts per million (ppm = mg/L) or parts per billion (ppb = ug/L). The IC channel reading is subtracted from the TC channel reading to give a TOC reading, see ASTM Standards, NEMI Method #: D5997. DL= .06 µg/L.tpn: 49570, A weighed amount of dried particulate (from water) or sediment is combusted at a high temperature using an elemental analyzer. The combustion products are passed over a copper reduction tube to covert nitrogen oxides to molecular nitrogen. Carbon dioxide, nitrogen, and water vapor are mixed at a known volume, temperature, and pressure. The concentrations of nitrogen and carbon are determined using a series of thermal conductivity detectors/traps, measuring in turn by difference hydrogen (as water vapor), carbon (as carbon dioxide), and nitrogen (as molecular nitrogen). Procedures also are provided to differentiate between organic and inorganic carbon, if desired, see USEPA Method 440, NEMI method #: 440. DL= .01 mg/L.
Short Name
TL-USGS-WEBB Data
Version Number
15

Parameter: Potassium

Samples for potassium analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, magnesium, sodium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

North Temperate Lakes LTER: Groundwater Chemistry 1984 - current

Abstract
Water chemistry is measured annually in 11 monitoring wells to characterize regional groundwater chemistry in the Trout Lake area. The chemical parameters measured include pH, conductivity, total alkalinity, dissolved inorganic and organic carbon, total nitrogen, nitrate, ammonia, total phosphorus, calcium, magnesium, sodium, potassium, chloride, sulfate, iron, manganese, total silica and dissolved reactive silica. Chemical data are available at a quarterly sampling frequency for some years. In addition (see related data set - Groundwater Level), water levels in 37 monitoring wells are measured several times per year. The wells are scattered throughout the Trout Lake hydrological basin and the data are used to calibrate and test regional groundwater flow models. Sampling Frequency: annually - with some earlier data from quarterly sampling Number of sites: 11
Dataset ID
10
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Ammonium, Nitrate, Nitrit Samples for ammonium and nitrate or nitrite are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored frozen until analysis, which should occur within 6 months. The samples are analyzed for ammonium (and nitrateornitrite) simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Ammonium is determined by utilizing the Berthelot Reaction, producing a blue colored indophenol compound, where the absorption is monitored at 660 nm. The detection limit for ammonium is approximately 3 ppb and the analytical range for the method extends to 4000 ppb. The detection limit for nitrateornitrite is approximately 2 ppb and the analytical range for the method extends to 4000 ppb. Method Log: Prior to January 2006 samples, ammonium was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, ammonium is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer. Chloride, Sulfate Samples for chloride and sulfate are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 6 months. The samples are analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent. The detection limit for chloride is approximately 0.01 ppm and the analytical range for the method extends to 100 ppm. The detection limit for sulfate is approximately 0.01 ppm and the analytical range for the method extends to 60 ppm. Method Log: Prior to January 1998 samples, chloride was determined on a Dionex DX10 Ion Chromatograph, using a chemical fiber suppressor. From 1998 to 2011, chloride was determined by a Dionex model DX500, using an electro-chemical suppressor. From January 2011 until present, chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor. Calcium, magnesium, sodium, potassium, iron, and manganese Samples for calcium analysis (as well as dissolved nitrogen and phosphorus, magnesium, sodium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. Calcium, as well as magnesium, sodium, potassium, iron, and manganese are analyzed simultaneously on an optical inductively-coupled plasma emission spectrophotometer (ICP-OES). The acidified samples are directly aspirated into the instrument without a digestion. Calcium is analyzed at 317.933 nm and at 315.887 nm and viewed axially for low-level analysis and radially for high level analysis. The detection limit for calcium is 0.06 ppm with an analytical range of the method extends to 50 ppm. The detection limit for iron is 0.02 ppm with an analytical range of the method extends to 20 ppm. The detection limit for magnesium is 0.03 ppm with an analytical range of the method extends to 50 ppm. The detection limit for manganese is 0.01 ppm with an analytical range of the method extends to 2 ppm. The detection limit for potassium is 0.06 ppm with an analytical range of the method extends to 10 ppm. The detection limit for sodium is 0.06 ppm with an analytical range of the method extends to 50 ppm. Method Log: Prior to January 2002, calcium, magnesium, sodium, potassium, iron, and manganese were determined on a Perkin-Elmer model 503 Atomic Absorption Spectrophotometer. Lanthanum at a 0.8percent concentration was added as a matrix modifier to suppress chemical interferences. From January 2002 to present, samples are analyzed for calcium on a Perkin-Elmer model 4300 DV ICP. Inorganic and organic carbon Samples for inorganic and organic carbon are collected together with a peristaltic pump and tubing and in-line filtered, if necessary, (through a 0.40 micron polycarbonate filter) into glass, 24 ml vials (that are compatible with the carbon analyzer autosampler), and capped with septa, leaving no head space. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2-3 weeks. The detection limit for inorganic carbon is 0.15 ppm, and the analytical range for the method is 60 ppm. The detection limit for organic carbon is 0.30 ppm and the analytical range for the method is 30 ppm. Method Log: Prior to May 2006 samples, inorganic carbon was analyzed by phosphoric acid addition on an OI Model 700 Carbon Analyzer. From May 2006 to present, inorganic carbon is still analyzed by phosphoric acid addition, but on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Method Log: Prior to May 2006 samples, organic carbon was analyzed by heated persulfate digestion on an OI Model 700 Carbon Analyzer. From May 2006 to present, Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Dissolved reactive silicon Samples for silicon are collected with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm. The detection limit for silicon is 6 ppb and the analytical range is 15000 ppb. Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silicon was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer. total and dissolved nitrogen and phosphorus Samples for total and dissolved nitrogen and phosphorus analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. The samples must first be prepared for analysis by adding an NaOH–Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave. The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm. The detection limit for total and dissolved nitrogen is approximately 21 ppb and the analytical range for the method extends to 2500 ppb. The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb. Method Log: Prior to January 2006 samples, total nitrogen was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total nitrogen is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer. pH We sample at the deepest part of the lake using a peristaltic pump and tubing, monthly during open water and approximately every five weeks during ice cover. We collect two types of pH samples at each sampling depth: one in 20ml vials with cone cap inserts to exclude all air from the vial, and one in 125ml bottles to be air equilibrated before analysis. The depths for sample collection are based on thermal stratification: top and bottom of the epilimnion, mid thermocline, and top, middle,and bottom of the hypolimnion. During mixis we sample at the surface, mid water column, and bottom. We analyze for pH the same day that samples are collected, keeping them cold and dark until just before analysis. Samples are warmed to room temperature in a dark container, and the air equilibrated samples are bubbled with outside air for at least 15 minutes prior to measurement. We measure pH using a Radiometer combination pH electrode and Orion 4Star pH meter. Protocol Log: 1981-1988 -- used a PHM84 Research pH meter. 1986 -- began analyzing air equilibrated pH. 1988 - July 2010 -- used an Orion model 720 pH meter.</p>
Short Name
NTLGW02
Version Number
23

North Temperate Lakes LTER: Chemical Limnology of Primary Study Lakes: Major Ions 1981 - current

Abstract
Parameters characterizing the major ions of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish) are measured at one station in the deepest part of each lake at the top and bottom of the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. These parameters include chloride, sulfate, calcium, magnesium, sodium, potassium, iron, manganese, and specific conductance (northern lakes only). Sampling Frequency: quarterly (winter, spring and fall mixis, and summer stratified periods) Number of sites: 11
Core Areas
Dataset ID
2
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Chloride, Sulfate Samples for chloride and sulfate are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 6 months. The samples are analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent. The detection limit for chloride is approximately 0.01 ppm and the analytical range for the method extends to 100 ppm. The detection limit for sulfate is approximately 0.01 ppm and the analytical range for the method extends to 60 ppm. Method Log: Prior to January 1998 samples, chloride was determined on a Dionex DX10 Ion Chromatograph, using a chemical fiber suppressor. From 1998 to 2011, chloride was determined by a Dionex model DX500, using an electro-chemical suppressor. From January 2011 until present, chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor.
Short Name
NTLCH02
Version Number
37

Little Rock Lake Experiment at North Temperate Lakes LTER: Major Ions 1996 - 2000

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. Parameters characterizing the major ions of the treatment and reference basins of Little Rock Lake are measured at one station in the deepest part of each basin at the top and bottom of the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. These parameters include chloride, sulfate, calcium, magnesium, sodium, potassium, iron, and manganese Sampling Frequency: varies - Number of sites: 2
Core Areas
Dataset ID
247
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Chloride, SulfateSamples for chloride and sulfate are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 6 months. The samples are analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent.The detection limit for chloride is approximately 0.01 ppm and the analytical range for the method extends to 100 ppm.The detection limit for sulfate is approximately 0.01 ppm and the analytical range for the method extends to 60 ppm.Method Log: Prior to January 1998 samples, chloride was determined on a Dionex DX10 Ion Chromatograph, using a chemical fiber suppressor. From 1998 to 2011, chloride was determined by a Dionex model DX500, using an electro-chemical suppressor. From January 2011 until present, chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor.
Short Name
LRMAJION1
Version Number
4

North Temperate Lakes LTER: Northern Highlands Stream Chemistry Survey 2006

Abstract
We compared regional patterns in lake and stream biogeochemistry in the Northern Highlands Lake District (NHLD), Wisconsin, USA to ask how regional biogeochemistry differs as a function of the type of ecosystem considered (i.e., lakes versus streams); if lake-stream comparisons reveal regional patterns and processes that are not apparent from studies of a single ecosystem type; and if characteristics of streams and lakes scale similarly. Fifty-two streams were sampled using a stratified random design to determine regional distribution of 21 water chemistry variables during summer baseflow conditions.Sampling Frequency: once per site Number of sites: 52
Contact
Core Areas
Dataset ID
254
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Site SelectionBecause lakes are a dominant feature of the region and stream characteristics could potentially differ based on their hydrologic connections to lakes, we classified streams into three categories as a function of their hydrologic connections to lakes. The first category was streams that had no lakes within the drainage network upstream of the sampling location. The second category was streams that originated from headwater lakes (i.e., no stream inlet but a stream outlet) and the headwater lake was the only lake in the drainage network above the sampling location. The final category had at least a single drainage lake (i.e., a lake with both stream inlet(s) and outlet) in the drainage network above the sampling location. We then used these categories to select sampling sites using a stratified random design for a variety of chemical and physical characteristics.All streams identified on 1:24,000 7.5 inch USGS topographical maps that crossed access points were selected as potential sampling locations and assigned to one of the three stream types. A stream could be classified by more than a single category depending on the sampling location within the drainage network. However, a single drainage network was never sampled more than once to ensure sample independence. Of the 500 possible sampling locations, 52 sites were selected and sampled.SamplingAll streams were sampled 7-10 channel widths upstream of an access point to minimize any influences caused by culverts and other features. Water samples were collected from the center of the channel using a peristaltic pump. Stream discharge was measured after Gore (2007) using cross sectional area and water velocity.Chemical AnalysesAll samples for both studies were collected and processed following the North Temperate Long Term Ecological Research (NTL-LTER) protocols (http://lter.limnology.wisc.edu). Filtering was done in the field using an in-line 0.45 μm membrane filter. All samples were stored on ice and returned to the laboratory where they were preserved according to NTL-LTER protocols. Acid neutralizing capacity (ANC) was determined by Gran titration (APHA 2005). DOC was measured on a Shimadzu TOC-V carbon analyzer. Total nitrogen and phosphorus (unfiltered, TN and TP; filtered, TDN and TDP), nitrate+nitrite (NO3-N), and ammonium (NH4-N) were quantified with an Astoria-Pacific segmented flow auto-analyzer. Soluble reactive phosphorus (SRP) in streams was measured colormetrically on a Beckman DU-800 spectrophotometer (APHA 2005). Anions (Cl- and SO4 2-) were measured using a Dionix DX-500 ion chromatograph and cations (Ca, Mg, Na, K, Fe, K, and Mn) on a Perkin Elmer ICP mass spectrometerDissolved inorganic carbon (DIC) and pH were quantified differently in the lakes and stream data sets. For the lakes data, DIC was determined with a Shimadzu TOC-V carbon analyzer, whereas DIC for the streams dataset was determined by headspace equilibration of acidified water samples in the field and direct measurement of carbon dioxide (CO2) gas on a Shimadzu gas chromatograph (Cole et al. 1994). pH measurements for the lakes dataset were quantified on non-air equilibrated samples in the lab with a Accumet 950 pH meter while direct measurements were taken in the field for the streams dataset using a hand-held Orion model 266 pH meter that was allowed to equilibrated about 20 min in the center for the stream channel.Several variables presented in this study were determined from calculations based on measured values. In streams, dissolved organic nitrogen and phosphorus (DON and DOP, respectively) were determined by the difference between inorganic nutrients and total dissolved nutrients (e.g., DOP = TDP-SRP). We were unable to determine DON in lakes due to the lack of inorganic nitrogen data. It was assumed that DOP approximately equals TDP in lakes because dissolved inorganic phosphorus concentrations in the region are typically below detection limits in the epilimnion during the summer months and consequently not quantified (NTL-LTER unpublished data).
Short Name
LOTTIG2
Version Number
19
Subscribe to potassium