US Long-Term Ecological Research Network

Cascade Project at North Temperate Lakes LTER High Frequency Sonde Data from Food Web Resilience Experiment 2008 - 2011

Abstract
High-frequency sonde data collected from the surface waters of two lakes in Upper Peninsula of Michigan during the summers of 2008-2011. The food web of Peter Lake was slowly transformed by gradual additions of Largemouth bass (Micropterus salmoides) while Paul Lake was an unmanipulated reference. Sonde data were used to calculate resilience indicators to evaluate the stability of the food web and to calculate ecosystem metabolism.
Dataset ID
360
Date Range
-
Methods
Data were collected at 5 minute intervals using in-situ automated sensors (sondes). All measurements and samples were collected from a stationary raft over the deepest part of the lake.
Sondes were suspended from floats with probes at a depth of 0.75m below the surface. Sonde sensors were cleaned daily in the field and calibrated monthly following manufacturer guidelines. Peter and Paul lakes were each monitored with two YSI multiparameter sondes (model 6600 V2-4) fitted with optical DO (model 6150), pH (model 6561), optical Chl-a (model 6025), and conductivity-temperature (model 6560) probes. Sensor measurements were made at 0.75 m every 5 min and were calibrated weekly. PAR was measured and the UNDERC meteorology station maintained by the University of Notre Dame or by the North Temperate Lakes Weather Station at Woodruff Airport.
Outliers were replaced by NA. Occasional gaps in the record due to instrument cleaning are NA.
Version Number
1

Light Extinction

Light (PAR) extinction coefficient is calculated by linearly regressing ln (FRLIGHT (z)) on depth z where the intercept is not constrained. FRLIGHT(z) = LIGHT(z) / DECK(z) where LIGHT(z) is light measured at depth z and DECK(z) is light measured on deck (above water) at the same time.

Lake Metabolism

Study sites
We sampled surface waters of 31 lakes in the Northern Highland Lake district of Wisconsin and the Upper Peninsula of Michigan during July and August of 2000 (Table 1). The lakes were chosen to span wide and orthogonal ranges in DOC and TP concentrations and for their close proximity to the Trout Lake Station in Vilas county, Wisconsin. The order in which the lakes were sampled was randomized.

North Temperate Lakes LTER: Physical Limnology of Primary Study Lakes 1981 - current

Abstract
Parameters characterizing the physical limnology of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish) are measured at one station in the deepest part of each lake at 0.25-m to 1-m depth intervals depending on the lake. Measured parameters in the data set include water temperature, vertical penetration of photosynthetically active radiation (PAR; not measured on lakes Mendota, Monona, Wingra, and Fish), dissolved oxygen, as well as the derived parameter percent oxygen saturation. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season for the northern lakes. The southern lakes are similar except that sampling occurs monthly during the fall and typically only once during the winter (depending on ice conditions). Number of sites: 11
Core Areas
Dataset ID
29
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Light (PAR) extinction coefficient is calculated by linearly regressing ln (FRLIGHT (z)) on depth z where the intercept is not constrained. FRLIGHT(z) = LIGHT(z) or DECK(z) where LIGHT(z) is light measured at depth z and DECK(z) is light measured on deck (above water) at the same time. For open water light profiles, the surface light measurement (depth z = 0) is excluded from the regression. For winter light profiles taken beneath the ice, the first light data are taken at the bottom of the ice cover and are included in the regression. The depth of uppermost light value is equal to the depth of the ice adjusted by the water level in the sample hole, i.e., the depth below the surface of the water. The water level can be at, above or below the surface of the ice. If the water level was not recorded, it is assumed to be 0.0 and the calculated light extinction coefficient is flagged. If ice thickness was not recorded, a light extinction coefficient is not calculated. For light data collected prior to March, 2007, light values less than 3.0 (micromolesPerMeterSquaredPerSec) are excluded. For light data collected starting in March 2007, light values less than 1.0 (micromolesPerMeterSquaredPerSec) are excluded. Except for bog lakes before August 1989, a light extinction coefficient is not calculated if there are less than three FRLIGHT values to be regressed. For bog lakes before August 1989, a light extinction coefficient is calculated if there are least two FRLIGHT values to be regressed. In these cases, the light extinction coefficient is flagged as non-standard. FRLIGHT values should be monotonically decreasing with depth. For light profiles where this is not true, a light extinction coefficient is not calculated. For samples for which light data at depth are present, but the corresponding deck light are missing, a light extinction coefficient is calculated by regressing ln (LIGHT (z)) on depth z. Note that if actual deck light had remained constant during the recording of the light profile, the resulting light extinction coefficient is the same as from regressing ln(FRLIGHT(z)). In these cases, the light extinction coefficient is flagged as non-standard. Oxygen and Temperature: We sample at the deepest part of the lake, taking a temperature and oxygen profile at meter intervals from the surface to within 1 meter of the bottom using a YSI Pro-ODO temporDO meter. We sample biweekly during open water and approximately every five weeks during ice cover. Protocol Log: Prior to 2011, we used a YSI Model 58 temporDO meter.
Short Name
NTLPH01
Version Number
28
Subscribe to photosynthetically active radiation