US Long-Term Ecological Research Network

Biocomplexity Project: pH and Alkalinity Measurement

EQUIPMENT
 
  • Radiometer pHM84 pH Meter
  • Fisher Series 5000 Strip Chart Recorder
  • Radiometer Model GK2401C Combination Electrode
 
SAMPLE COLLECTION
 
1) Rinse bottle 3 times with small volumes of the water to be sampled.
2) Collect pH and alkalinity samples in separate 20-ml scintillation vials with displacement caps. Collect a second pH sample in a 125-ml wide mouth bottle. Fill the 20-ml vials with a minimum of splashing and air entrainment.

Lake Metabolism

Study sites
We sampled surface waters of 31 lakes in the Northern Highland Lake district of Wisconsin and the Upper Peninsula of Michigan during July and August of 2000 (Table 1). The lakes were chosen to span wide and orthogonal ranges in DOC and TP concentrations and for their close proximity to the Trout Lake Station in Vilas county, Wisconsin. The order in which the lakes were sampled was randomized.

North Temperate Lakes LTER: Chemical Limnology of Primary Study Lakes: Nutrients, pH and Carbon 1981 - current

Abstract
Parameters characterizing the nutrient chemistry of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra, and Fish) are measured at multiple depths throughout the year. These parameters include total nitrogen, total dissolved nitrogen, nitrite+nitrate-N, ammonium-N, total phosphorus, total dissolved phosphorus, dissolved reactive phosphorus (only in the southern lakes and not in Wingra and Fish after 2003), bicarbonate-reactive filtered and unfiltered silica (both discontinued in 2003), dissolved reactive silica, pH, air equilibrated pH (discontinued in 2014 in the northern lakes and in 2020 in the southern lakes), total alkalinity, total inorganic carbon, dissolved inorganic carbon, total organic carbon, dissolved organic carbon, and total particulate matter (only in the northern lakes in this data set; total particulate matter in southern lakes starting in 2000 is available in a separate dataset). Sampling Frequency: Northern lakes- monthly during ice-free season -- every 5 weeks during ice-covered season. Southern lakes- Southern lakes samples are collected every 2-4 weeks during the summer stratified period, at least monthly during the fall, and typically only once during the winter, depending on ice conditions. Number of sites: 11
Dataset ID
1
Date Range
-
DOI
10.6073/pasta/cc6f0e4d317d29200234c7243471472a
Maintenance
ongoing
Metadata Provider
Methods
Inorganic and organic carbon: Samples for inorganic and organic carbon are collected together with a peristaltic pump and tubing and in-line filtered, if necessary, (through a 0.40 micron polycarbonate filter) into glass, 24 ml vials (that are compatible with the carbon analyzer autosampler), and capped with septa, leaving no head space. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2-3 weeks. The detection limit for inorganic carbon is 0.15 ppm, and the analytical range for the method is 60 ppm. The detection limit for organic carbon is 0.30 ppm and the analytical range for the method is 30 ppm. Method Log: Prior to May 2006 samples, inorganic carbon was analyzed by phosphoric acid addition on an OI Model 700 Carbon Analyzer. From May 2006 to present, inorganic carbon is still analyzed by phosphoric acid addition, but on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Method Log: Prior to May 2006 samples, organic carbon was analyzed by heated persulfate digestion on an OI Model 700 Carbon Analyzer. From May 2006 to present, Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer. Dissolved reactive silica Samples for silica are collected with a peristaltic pump and tubing and in-line filtered (through a 45 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm. The detection limit for silica is 6 ppb and the analytical range is 15000 ppb. Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silica was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer. total and dissolved nitrogen and phosphorus Samples for total and dissolved nitrogen and phosphorus analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 45 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius. The samples must first be prepared for analysis by adding an NaOH–Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave. The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm. The detection limit for total and dissolved nitrogen is approximately 21 ppb and the analytical range for the method extends to 2500 ppb. The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb. Method Log: Prior to January 2006 samples, total nitrogen was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total nitrogen is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.
Short Name
NTLCH01
Version Number
52

North Temperate Lakes LTER: High Frequency CO2 and YSI AutoProfiler Data - Sparkling Bog North Buoy 2008

Abstract
The instrumented buoy on Sparkling Bog North is equipped with a CO2 monitor and a YSI AutoProfiler that measures several parameters including dissolved oxygen, water temperature, conductivity, pH, ORP, turbulence and chlorophyll-a. The buoy is also equipped with a thermistor chain and a D-OPTO dissolved oxygen sensor at depth .5 m as well as meteorological sensors that provide fundamental information on lake thermal structure, weather conditions, and lake metabolism. Data are usually collected either at 1 minute or 10 minute intervals. Sampling Frequency: varies for instantaneous sample. Generally 1 minute or 10 minutes. Number of sites: 1
Core Areas
Dataset ID
229
Date Range
-
Instrumentation
<p>YSI AutoProfiler</p>
Maintenance
completed
Metadata Provider
Methods
see abstract for methods description.
Short Name
NSPBBUOY3
Version Number
19

Little Rock Lake Experiment at North Temperate Lakes LTER: pH and Alkalinity 1983 - 2000

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. pH and alkalinity of the treatment and reference basins of Little Rock Lake are measured at one station in the deepest part of each basin at the top and bottom of the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. During the course of the study, three different types of electrodes were used to measure pH. Sampling Frequency: varies - Number of sites: 2
Core Areas
Dataset ID
252
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
AlkalinitySamples for alkalinity are collected with a peristaltic pump and tubing into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2 weeks. The samples are warmed to room temperature and then analyzed with an Orion 720A pH meter and Radiometer combination electrode. The sample is titrated to an endpoint pH of approximately 3.557 by adding 0.05N HCl to 16 mls sample at the Hasler Lab (or 0.01N HCl to 4 mls sample at Trout Lake Station Lab) in 10 microliter increments using a micro-pipette. The pH meter millivolt readings (along with the corresponding the amount of acid added) of the last 10 acid additions prior to the endpoint are recorded.The detection limit for the gran alkalinity titration is approximately 5 micro-equivalents per liter of CO3 and the analytical range for the method extends to 4000 micro-equivalents per liter of CO3.Method Log: Prior to 1986 and since 2002, alkalinity titrations were performed as described above. During the period of February 1986 &ndash; November 2001, the alkalinity determinations for Trout, Sparkling, Allequash and Big Muskellunge Lakes were made by a Brinkmann 636 Titroprocessor using 0.05N HCl with 16 mls of sample.pHWe sample at the deepest part of the lake using a peristaltic pump and tubing, monthly during open water and approximately every five weeks during ice cover. We collect two types of pH samples at each sampling depth: one in 20ml vials with cone cap inserts to exclude all air from the vial, and one in 125ml bottles to be air equilibrated before analysis. The depths for sample collection are based on thermal stratification: top and bottom of the epilimnion, mid thermocline, and top, middle,and bottom of the hypolimnion. During mixis we sample at the surface, mid water column, and bottom.We analyze for pH the same day that samples are collected, keeping them cold and dark until just before analysis. Samples are warmed to room temperature in a dark container, and the air equilibrated samples are bubbled with outside air for at least 15 minutes prior to measurement. We measure pH using a Radiometer combination pH electrode and Orion 4Star pH meter.Protocol Log: 1981-1988 -- used a PHM84 Research pH meter.1986 -- began analyzing air equilibrated pH.1988 - July 2010 -- used an Orion model 720 pH meter.
Short Name
LRPHALK
Version Number
3

Little Rock Lake Experiment at North Temperate Lakes LTER: Nutrients 1996 - 2000

Abstract
The Little Rock Acidification Experiment was a joint project involving the USEPA (Duluth Lab), University of Minnesota-Twin Cities, University of Wisconsin-Superior, University of Wisconsin-Madison, and the Wisconsin Department of Natural Resources. Little Rock Lake is a bi-lobed lake in Vilas County, Wisconsin, USA. In 1983 the lake was divided in half by an impermeable curtain and from 1984-1989 the northern basin of the lake was acidified with sulfuric acid in three two-year stages. The target pHs for 1984-5, 1986-7, and 1988-9 were 5.7, 5.2, and 4.7, respectively. Starting in 1990 the lake was allowed to recover naturally with the curtain still in place. Data were collected through 2000. The main objective was to understand the population, community, and ecosystem responses to whole-lake acidification. Funding for this project was provided by the USEPA and NSF. Parameters characterizing the nutrient chemistry of the treatment and reference basins of Little Rock Lake are measured at one station in the deepest part of each basin at the top and bottom of the epilimnion, mid-thermocline, and top, middle, and bottom of the hypolimnion. These parameters include total nitrogen, total dissolved nitrogen, nitrate, ammonia, total phosphorus, total dissolved phosphorus, dissolved reactive phosphorus, bicarbonite-reactive filtered and unfiltered silica, dissolved reactive silica, total inorganic carbon, dissolved inorganic carbon, total organic carbon, dissolved organic carbon, and total particulate matter. Sampling Frequency: varies - Number of sites: 2
Dataset ID
246
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Inorganic and organic carbonSamples for inorganic and organic carbon are collected together with a peristaltic pump and tubing and in-line filtered, if necessary, (through a 0.40 micron polycarbonate filter) into glass, 24 ml vials (that are compatible with the carbon analyzer autosampler), and capped with septa, leaving no head space. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 2-3 weeks.The detection limit for inorganic carbon is 0.15 ppm, and the analytical range for the method is 60 ppm.The detection limit for organic carbon is 0.30 ppm and the analytical range for the method is 30 ppm.Method Log: Prior to May 2006 samples, inorganic carbon was analyzed by phosphoric acid addition on an OI Model 700 Carbon Analyzer. From May 2006 to present, inorganic carbon is still analyzed by phosphoric acid addition, but on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.Method Log: Prior to May 2006 samples, organic carbon was analyzed by heated persulfate digestion on an OI Model 700 Carbon Analyzer. From May 2006 to present, Organic carbon is analyzed by combustion, on a Shimadzu TOC-V-csh Total Organic Carbon Analyzer.Dissolved reactive siliconSamples for silicon are collected with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm.The detection limit for silicon is 6 ppb and the analytical range is 15000 ppb.Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silicon was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer.total and dissolved nitrogen and phosphorusSamples for total and dissolved nitrogen and phosphorus analysis are collected together with a peristaltic pump and tubing and in-line filtered, when necessary, (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 mL of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.The samples must first be prepared for analysis by adding an NaOH&ndash;Persulfate digestion reagent and heated for an hour at 120 degrees C and 18-20 psi in an autoclave.The samples are analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method, as described in Standard Methods, where the absorption is monitored at 520 nm.The detection limit for total and dissolved nitrogen is approximately 21 ppb and the analytical range for the method extends to 2500 ppb.The detection limit for total phosphorus is approximately 3 ppb and the analytical range for the method extends to 800 ppb.Method Log: Prior to January 2006 samples, total nitrogen was determined on a Technicon segmented flow autoanalyzer. From 2006 to present, total nitrogen is determined by an Astoria-Pacific Astoria II segmented flow autoanalyzer.
Short Name
LRNUTR1
Version Number
4
Subscribe to ph