Methods
The Fast Limnology Automated Measurement (FLAMe) platform is a novel flow-through system designed to sample inland waters at both low- (0 to appr. 10 km hr-1) and high-speeds (10 to greater than 45 km hr-1) described in Crawford et al. (2015). The FLAMe consists of three components: an intake manifold that attaches to the stern of a boat; a sensor and control box that contains hoses, valves, a circulation pump and sensor cradles; and a battery bank to power the electrical components. The boat-mounted intake manifold serves multiple purposes. First, sensors are mounted inside the boat, protecting them from potential damage. Second, the intake system creates a constant, bubble-free water flow, thus preventing any issues for optical sensors due to cavitation. Finally, to analyze dissolved gases, a constant water source is needed on board. Water flow via both the slow- and high-speed intakes is regulated by the onboard impeller pump, allowing for seamless switching between slow- and high-speed operations. Any number of sensors could be integrated into the platform with simple modifications, and can be combined with common limnological instruments such as acoustic depth-finders. In our example applications we used a YSI EXO2 multiparameter sonde (EXO2; Yellow Springs, OH, USA), and a Satlantic SUNA V2 optical nitrate (NO3) sensor (Halifax, NS, Canada), both integrated into the control box plumbing with flow-through cells available from the manufacturer. Additionally, a Los Gatos Research ultraportable greenhouse gas analyzer (UGGA) (cavity enhanced absorption spectrometer; Mountain View, CA, USA) was used to measure dry mole fraction of carbon dioxide (CO2) and methane (CH4) dissolved in surface water by equilibrating water with a small headspace using a sprayer-type equilibration system that has previously been shown to have fast response times relative to other designs16 (Figure S1). Both the EXO2 and the UGGA are capable of logging data at 1 Hz. Because the SUNA was operated out of the water and on a boat during warm periods, data were collected less frequently (appr. 0.1 Hz) to minimize lamp-on time and avoid the lamp temperature cutoff of 35° C. The EXO2 sonde uses a combination of electrical and optical sensors for: specific conductivity, water temperature, pH, dissolved oxygen, turbidity, fluorescent dissolved organic matter (fDOM), chlorophyll-a fluorescenece, and phycocyanin fluorescence. The SUNA instrument measures NO3 using in situ ultraviolet spectroscopy between 190-370 nm, has a detection range of 0.3-3000 microM NO3, and a precision of 2 microM NO3. The UGGA has a reported precision of 1 ppb (by volume). In order to translate time-series data from the instruments into spatial data, we also logged latitude and longitude at 1 Hz with a global positioning system (GPS) with the Wide Area Augmentation System (WAAS) functionality enabled allowing for less than 3 m accuracy for 95percent of measured coordinates. Synchronized time-stamps from the EXO2, UGGA, SUNA, and GPS were used to combine data streams into a single spatially-referenced dataset.
We ran a simple set of experiments to determine the residence time of the system and the overall response time of the EXO2 and UGGA sensors integrated into the platform. After determining first-order response characteristics of each sensor, we applied an ordinary differential equation method to correct the raw data for significant changes in water input resulting in higher accuracy spatial data (see Crawford et al. 2015).
Sensor response experiments
We conducted a series of sensor response experiments on Lake Mendota on August 1, 2014. The goal was to understand the potential lags and minimum response times for the EXO2 and UGGA sensors integrated into the FLAMe platform. These data were then used to develop correction procedures for higher accuracy spatial datasets. To test sensor responses to step-changes in water chemistry, we mixed a 40 L tracer solution into a plastic carboy that was connected to the reservoir port on the FLAMe. The reservoir was mixed with 50 mL of rhodamine WT to test the phytoplankton fluorescence sensors, 6 mL of quinine sulfate solution in acid buffer (100 QSE) to test the fDOM sensor, 14 g of KCl to test the conductivity sensor, and appr. 2 kg of ice to reduce the temperature of the solution relative to lake water. The mixture volume was increased to 40 L using tap water. We did not modify the CO2 concentration or pH in the carboy as we found the municipal water source to have greater than ambient lake CO2 (4300 vs. 290 microatm, respectively) and lower pH (7.5 vs 8.3, respectively). At the beginning of the experiments, we allowed lake water to circulate through the system for appr. 10 minutes. We then switched to the tracer solution for a period of five minutes, followed by five minutes of lake water, then back to the tracer solution for an additional five minutes.
Using the step-change experiment data, we determined each sensors hydraulic time constant (Hr) and parameter time constant (taus). The sensor-specific Hr is a function of system water residence time and sensor position/shielding within the system. Taus is the time required for a 63 percent response to a step-change input. Hr was calculated based on the plateau experiments and was indicated by the first observation with a non-zero rate of change. The CO2 and CH4 sensors had a much greater Hr than the EXO2 sensors because water must travel further through the system before equilibrating with the gas solution being pumped to the UGGA. Using these Hr values, we offset response variables thus removing the hydraulic lag. This correction does not account for sensor-specific response patterns (tau s). The EXO2 sensors have manufacturer-reported taus values between 2-5 s, but these values are not appropriate to apply to the FLAMe system because they do not include system hydraulic lag and mixing. In order to match sensor readings with spatial information, we first applied Hr values from each sensor output according to equation 2. This step aligns the time at which each sensor begins responding to the changing water, and accounts for the physical distance the water must travel before being sensed
In order to match individual sensor response characteristics and to obtain more accurate spatial data, we then applied sensor-specific corrections using Equation 3 (Fofonoff et al., 1974).
We first smoothed the raw data using a running mean of 3 observations in order to reduce inherent noise of the 1 Hz data. We then calculated dX/dt using a 3-point moving window around Xc. Equation 3 should ideally lead to a step response to a step-change input. We note that this is the same strategy used to correct oceanographic conductivity and temperature instruments (see Fozdar et al., 1985). Overall, the taus-corrected data show good responses to step-change inputs and indicate that this is a useful technique for generating higher accuracy spatial data. We include three types of data for each variable including: raw (e.g., TempC), the hydraulic lag corrected (e.g., TempC_hydro) and the taus-corrected data (e.g., TempC_tau). Note that not all sensors were used in each survey and not all sensors have each type of correction. This data was from our preliminary FLAMe sampling campaigns and future studies will include additional sensor outputs and corrections.
We used the FLAMe throughout the summer of 2014 on four distinct aquatic ecosystems including: a small dystrophic lake, a stream/lake complex, a medium-sized eutrophic lake, and a managed reach of the Upper Mississippi River. Each of these applications demonstrates the spatial variability of surface water chemistry and the flexibility of FLAMe for limnological research.
References
Crawford JT, Loken LC, Casson NJ, Smith C, Stone AG, and Winslow LA (2015) High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology. Environmental Science and Technology 49:442-450.
Fozdar FM, Parker GJ, and Imberger J (1985) Matching temperature and conductivity sensor response characteristics. Journal of Physical Oceanography 15:1557-1569.