US Long-Term Ecological Research Network

River Nutrient Uptake and Transport at North Temperate Lakes LTER (2005-2011)

Abstract
These data were collected by Stephen Michael Powers and collaborators for his Ph.d. research, documented in his dissertation: River Nutrient Uptake and Transport Across Extremes in Channel Form and Drainage Characteristics. A major goal of this research was to better understand how ecosystem form and landscape setting dictate aquatic biogeochemical functioning and elemental transport through rivers. To achieve this goal, major and minor ions were measured in both northern and southern Wisconsin streams located in a variety of land use settings. In total, 27 different streams were sampled at 104 different stations (multiple stations per system) from both groundwater and surface water sources. Organic and inorganic carbon and nitrogen pools were also measured in northern and southern Wisconsin streams. The streams that were sampled in northern Wisconsin flow through wetland ecosystems. In sampling such streams, the goal was to better understand how wetland ecosystems influence river nutrient deliveries. There is a large amount of stream chemistry data for Big Spring Creek, WI; where the influence of a small reservoir on solute transportation and transformation was studied in an agricultural watershed. All stream chemistry data is incorporated in a single data file, Water Chemistry 2005-2011. While the data is not included in the dissertation, a sediment core study was also done in the small reservoir and channel of Big Spring (BS) Creek, WI. The results of this study are featured in three data tables: BS Creek Sediment Core Analysis, BS Creek Sediment Core Chemistry, and BS Creek Longitudinal Profile. Finally, two data tables list the geospatial information of sampling sites for stream chemistry and sediment coring in Big Spring Creek. Documentation: Powers, S.M., 2012. River nutrient uptake and transport across extremes in channel form and drainage characteristics. ProQuest Dissertations and Theses. The University of Wisconsin - Madison, United States -- Wisconsin, p. 140.
Dataset ID
281
Date Range
-
Metadata Provider
Methods
I. Stream chemistry sample collection methods: core-sediment core was taken from the benthic zone of the streamgeopump-geopump used to pump stream water into collection bottlegrab-collection bottle filled with stream water by hand and filtered in the fieldgrabfilter- stream water collected by hand and filtered in field. Unfiltered and filtered samples placed in separate collection bottles.isco- sample collected by use of an ISCO automated samplerpoint- sampled collected by method outlined in patent US8337121sedimentgrab- sediment sample taken in field by hand and placed in collection bottlesyringe- sample collected from stream by syringe and placed in collection bottlesyringe_filter- sample collected from stream by syringe filter. Unfiltered and filtered samples placed in separate collection bottles. II. Stream chemistry analytical methods: All water samples were kept on ice and in the dark following collection, then were either acidified (TN/TP, TDN/TDP) or frozen until analysis (all other analytes).no32_2- This is NO<sub>3-</sub>N which is operationally defined as nitrate nitrogen + nitrite nitrogen. Determined by flow injection analysis on Astoria Pacific Instruments Autoanalyzer (APIA).nh4_n, tn1, tp1, tdn, tdp- All analytes measured by flow injection analysis on Astoria Pacific Instruments Autoanalyzer (APIA).srp- measured colorometrically using the molybdate blue method [APHA 1995] and a Beckman spectrophotometer.doc- measured using a Shimadzu carbon analyzer.doc_qual- the goal in doing this analysis is to determine the source of dissolved organic carbon (doc) measured in a particular riverine ecosystem. This was achieved by UV absorbance which provides an estimate of the aromaticity of the doc in a sample, and by extension, the potential source of the doc.cl, no2, no3, br, and so4- all measured by ion chromatography. See http://www.nemi.gov; method number 4110C. Detection limits for method number 4110C: cl-20&micro;g/l, no2-15&micro;g/l, no3-17&micro;g/l, br-75&micro;g/l, and so4-75&micro;g/l.ysi_cond, do, ph_field, wtemp- all measured by use of a standard YSI meter.tss- measured by standard methods. A thoroughly mixed sample is filtered and dried at 103-105 degreesCelcius. The obtained residue represents the amount of solids suspended in the sample solution. See http://www.nemi.giv; method number D5907.tot_om- measured by standard methods. The residue obtained from the tss procedure is ignited at 550 degreesCelcius and weighed, the difference in weight representing total volatile solids. Total volatile solids represents the portion of the residue that is composed of organic molecules. See http://www.nemi.gov; method number 160.4.turbid- measured by use of a nephelometer. III. Big Spring Sediment Coring Methods A. Field Methods- collecting sediment coresSediment core samples taken with WDNR piston core samplerB. Sediment Analysis- HydrometerDocumentation: Robertson, G.P., Coleman, D.C., Bledsoe, C.S. and Sollins, P., 1999. Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, 462 pp.Hydrometer Analysis- procedure used to determine percent clay:<p style="margin-left:.25in;">1. Dry the sample in a pre-weighed aluminum pan for at least 24 hr at 105 C. Make sure sample is completely dry before weighing.<p style="margin-left:.25in;">2. Weigh the dried sample, then ash for at least 8 hr at 550 C. Make sure to break up any large clumps before ashing.<p style="margin-left:.25in;">3. Weigh the ashed sample, then crush any aggregates with a pestal. Mix sample thoroughly.<p style="margin-left:.25in;">4. Transfer 40g, plus or minus one gram, of the sample into a 500mL wide mouth bottle<p style="margin-left:.25in;">5. Add 10g of sodium hexametaphosphate to the bottle.<p style="margin-left:.25in;">6. Add approx 200mL of deionized water to bottle. Shake vigorously with hand.<p style="margin-left:.25in;">7. Stir samples on shaker table for at least 8 hr at speed 40. Putting them in a box and fastening with bungee cords works best.<p style="margin-left:.25in;">8. Transfer sample to 1L cylinder, making sure to get all of sample out of bottle. Fill cylinder with deionized water up to the 1L mark.<p style="margin-left:.25in;">9. Prepare a blank cylinder by adding 10g of sodium hexametaphosphate and filling to 1L.<p style="margin-left:.25in;">10. Allow all cylinders to equilibrate to room temperature ( approx 30 min).<p style="margin-left:.25in;">11. Starting with the blank cylinder, put stopper into cylinder and shake end-over-end for approx 5 min. Rinse stopper. Repeat this step for all cylinders, rinsing stopper between cylinders.<p style="margin-left:.25in;">12. Record the time that you stopped shaking each cylinder.<p style="margin-left:.25in;">13. At 1.5 hr from time of shaking, record temperature and hydrometer level of the blank cylinder. Then record the 1.5 hr hydrometer level for each successive cylinder.<p style="margin-left:.25in;">14. At 24 hr from time of shaking, record temperature and hydrometer level of the blank cylinder. Then record the 24 hr hydrometer level for each successive cylinder. Sieve Analysis- procedure used to determine quantity of sand and silt<p style="margin-left:.25in;">1. After hydrometer analysis, pour the entire sample into the .063mm sieve. Rinse the sample thoroughly until all the clay is out. Try to break up any clay clumps you see.<p style="margin-left:.25in;">2. Transfer the sample to a pre-weighed and labeled aluminum pan. You will probably need to backwash the sieve to get the entire sample out. You can use a syringe to pull water from the pan if it gets too full. Dry the sample for 48 hours at 50-60C.<p style="margin-left:.25in;">3. Before transferring the dried sample to the sieves, make sure you pre-weigh the sieves and put their weight on the data sheet. You will need to do this before every sample as you might not get all the sample out of the sieves from the previous sample. Stack the sieves in the following order, top to bottom : 4mm, 2mm, 1mm, 0.5mm, 0.25mm, 0.125mm, 0.063mm, and pan. Pour the sample into the top sieve. Place the lid on, located on sieve shaker, and put the stack of sieves into the sieve shaker. Fasten the tie downs. Set shaker for 3 minutes. <p style="margin-left:.25in;">4. Remove stack of sieves from shaker. It&rsquo;s ok to leave the pan behind temporarily as it might be tight. Weigh each sieve and record the weight in the data sheet. If you see any clay clumps, break them up with your fingers and re-shake the stack a little, using hands is okay.<p style="margin-left:.25in;">5. Dump the sample out in the trash and clean the sieve with the brush. At the end of the day it might be necessary to backwash the sieves with water and dry overnight in the oven. <p style="margin-left:.25in;"> Calculations:1. percent clay was determined by the hydrometer analysis- P1.5, P24, X1.5, X24, and m are the variables that were calculated to determine percent clay by the hydrometer analysis.P1.5= ((sample hydrometer reading at 1.5 hours- blank hydrometer reading at 1.5 hours)/ (sample weight)) multiplied by 100.P24= ((sample hydrometer reading at 24 hours- blank hydrometer reading at 24 hours)/ (sample weight)) multiplied by 100X1.5= 1000*(.00019*(-.164* (sample hydrometer reading at 1.5 hours)+16.3)<sup>2</sup> *8100X24=1000*(.00019*(-.164* (sample hydrometer reading at 24 hours)+16.3)<sup>2</sup> *8100m= (P1.5-P24)/(ln(X1.5/X24))percent clay = m * ln(2/X24)) + P24clay (grams) = total weight * ( percent clay/ 100)2. percent Sand and percent Silt were determined based on the results of the sieve analysis which determined the grams of sand and silt.percent sand= total weight * (percent sand/ 100)percent silt= total weight * (percent silt/ 100)3. Othersorganic matter (grams) was calculated in this analysis as dry weight (grams) &ndash; ashed weight (grams)percwnt organic matter was calculated as ((organic matter (grams))/(total dry weight (grams)) multiplied by 100 C. Sediment Chemical Analysis1. SRP/ NaOH-PChemical analysis was done according to the protocol outlined in Pionke and Kunishi (1992). Each sample was first centrifuged and separated into aqueous and sediment fractions. The sediment fraction was then dried. The aqueous fraction was analyzed for soluble reactive phosphorus (srp) by automated colorimetry Nemi Method Number 365.4; see http://www.nemi.gov. NaOH P was then determined by NaOH extractions as described in Pionke and Kunishi (1992). Documentation: Pionke HB, Kunishi HM (1992) Phosphorus status and content of suspended sediment in a Pennsylvania watershed. Soil Sci 153:452&ndash;462.2. NH4 / KCl-NH4 The exact procedure that was used to analyze samples for ammonium is unknown. However, it is known that a KCl extraction was used. The KCl-NH4 was calculated as the concentration of ammonium in milliGramsPerLiter divided by the sediment weight in grams. 3. NO3 / KCl-NO3The exact procedure that was used to analyze samples for nitrate is also unknown. Again, it is known that a KCL extraction was used. The KCl-NO3 was calculated as the concentration of nitrate in milliGramsPerLiter divided by the sediment weight in grams.Note: The same sediment sample was used to measure ammonium and nitrate IV. Big Spring Creek Longitudinal Profile A standard longitudinal stream profile was conducted at Big Spring Creek, WI (wbic=176400) on unknown date(s). It is speculated that the profile was done during the summer of 2005, during which the rest of the data for Big Spring Creek was collected. Measurements for the profile began at the Big Spring Dam site (43.67035,-89.64225), a dam which was subsequently removed. The first (x_dist, y_dist) of (2.296, 5.57) corresponds to the location where the stream crosses Golden Court Road, whereas the second coordinate pair of (-2.615, -36.303) corresponds to the point below the previous Big Spring Creek Dam site. The third (x_dist, y_dist) of (-9.472, 7.681) corresponds to the top of the dam gates and is assigned a distance=0 as it is the starting point.
Version Number
23

Trout Lake USGS Water, Energy, and Biogeochemical Budgets (WEBB) Stream Data 1975-current

Abstract
This data was collected by the United States Geological Survey (USGS) for the Water, Energy, and Biogeochemical Budget Project. The data set is primarily composed of water chemistry variables, and was collected from four USGS stream gauge stations in the Northern Highland Lake District of Wisconsin, near Trout Lake. The four USGS stream gauge stations are Allequash Creek at County Highway M (USGS-05357215), Stevenson Creek at County Highway M (USGS-05357225), North Creek at Trout Lake (USGS-05357230), and the Trout River at Trout Lake (USGS-05357245), all near Boulder Junction, Wisconsin. The project has collected stream water chemistry data for a maximum of 36 different chemical parameters,. and three different physical stream parameters: temperature, discharge, and gauge height. All water chemistry samples are collected as grab samples and sent to the USGS National Water Quality Lab in Denver, Colorado. There is historic data for Stevenson Creek from 1975-1977, and then beginning again in 1991. The Trout Lake WEBB project began during the summer of 1991 and sampling of all four sites continues to date.
Creator
Dataset ID
276
Date Range
-
Maintenance
Completed.
Metadata Provider
Methods
DL is used to represent “detection limit” where known.NOTE (1): Each method listed below corresponds with a USGS Parameter Code, which is listed after the variable name. NOTE (2): If the NEMI method # is known, it is also specified at the end of each method description.NOTE (3): Some of the variables are calculated using algorithms within QWDATA. If this is the case see Appendix D of the NWIS User’s Manual for additional information. However, appendix D does not list the algorithm used by the USGS. If a variable is calculated with an algorithm the term: algor, will be listed after the variable name.anc: 99431, Alkalinity is determined in the field by using the gran function plot methods, see TWRI Book 9 Chapter A6.1. anc_1: 90410 and 00410, Alkalinity is determined by titrating the water sample with a standard solution of a strong acid. The end point of the titration is selected as pH 4.5. See USGS TWRI 5-A1/1989, p 57, NEMI method #: I-2030-89.2. c13_c12_ratio: 82081, Exact method unknown. The following method is suspected: Automated dual inlet isotope ratio analysis with sample preparation by precipitation with ammoniacal strontium chloride solution, filtration, purification, acidified of strontium carbonate; sample size is greater than 25 micromoles of carbon; one-sigma uncertainty is approximately ± 0.1 ‰. See USGS Determination of the delta13 C of Dissolved Inorganic Carbon in Water, RSIL Lab Code 1710. Chapter 18 of Section C, Stable Isotope-Ratio Methods Book 10, Methods of the Reston Stable Isotope Laboratory.3. ca, mg, mn, na, and sr all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:ca- 00915, mg- 00925, mn- 01056, na- 00930, sr- 01080All metals are determined simultaneously on a single sample by a direct reading emission spectrometric method using an inductively coupled argon plasma as an excitation source. Samples are pumped into a crossflow pneumatic nebulizer, and introduced into the plasma through a spray chamber and torch assembly. Each analysis is determined on the basis of the average of three replicate integrations, each of which is background corrected by a spectrum shifting technique except for lithium (670.7 nm) and sodium (589.0 nm). A series of five mixed-element standards and a blank are used for calibration. Method requires an autosampler and emission spectrometry system. See USGS OF 93-125, p 101, NEMI Method #: I-1472-87.DL’s: ca- .02 mg/l, mg-.01 mg/l, mn-1.0 ug/l, na- .2 mg/l, sr- .5 ug/l4. cl, f, and so4 all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:cl- 00940, f-00950, so4-00945All three anions (chloride, flouride, and sulfate) are separated chromatographically following a single sample injection on an ion exchange column. Ions are separated on the basis of their affinity for the exchange sites of the resin. The separated anions in their acid form are measured using an electrical conductivity cell. Anions are identified on the basis of their retention times compared with known standards. 19 The peak height or area is measured and compared with an analytical curve generated from known standards to quantify the results. See USGS OF 93-125, p 19, NEMI method #: I-2057.DL’s: cl-.2 mg/l, f-.1 mg/l, so4-.2 mg/lco2: 00405, algor, see NWIS User's Manual, QW System, Appendix D, Page 285.co3: 00445, algor.color: 00080, The color of the water is compared to that of the colored glass disks that have been calibrated to correspond to the platinum-cobalt scale of Hazen (1892), See USGS TWRI 5-A1 or1989, P.191, NEMI Method #: I-1250. DL: 1 Pt-Co colorconductance_field: 00094 and 00095, specific conductance is determined in the field using a standard YSI multimeter, See USGS TWRI 9, 6.3.3.A, P. 13, NEMI method #: NFM 6.3.3.A-SW.conductance_lab: 90095, specific conductance is determined by using a wheat and one bridge in which a variable resistance is adjusted so that it is equal to the resistance of the unknown solution between platinized electrodes of a standardized conductivity cell, sample at 25 degrees celcius, See USGS TWRI 5-A1/1989, p 461, NEMI method #: I-1780-85.dic: 00691, This test method can be used to make independent measurements of IC and TC and can also determine TOC as the difference of TC and IC. The basic steps of the procedure are as follows:(1) Removal of IC, if desired, by vacuum degassing;(2) Conversion of remaining inorganic carbon to CO<sub>2</sub> by action of acid in both channels and oxidation of total carbon to CO<sub>2</sub> by action of ultraviolet (UV) radiation in the TC channel. For further information, See ASTM Standards, NEMI method #: D6317. DL: n/adkn: 00623 and 99894, Organic nitrogen compounds are reduced to the ammonium ion by digestion with sulfuric acid in the presence of mercuric sulfate, which acts as a catalyst, and potassium sulfate. The ammonium ion produced by this digestion, as well as the ammonium ion originally present, is determined by reaction with sodium salicylate, sodium nitroprusside, and sodium hypochlorite in an alkaline medium. The resulting color is directly proportional to the concentration of ammonia present, see USGS TWRI 5-A1/1989, p 327, NEMI method #: 351.2. DL: .10 mg/Ldo: 0300, Dissolved oxygen is measured in the field with a standard YSI multimeter, NEMI Method #: NFM 6.2.1-Lum. DL: 1 mg/L.doc: 00681, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS OF 92-480, NEMI Method #: O-1122-92. DL: .10 mg/L.don: 00607, algor, see NWIS User's Manual, QW System, Appendix D, page 291.dp: 00666 and 99893, All forms of phosphorus, including organic phosphorus, are converted to orthophosphate ions using reagents and reaction parameters identical to those used in the block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and mercury (II) at a temperature of 370 deg, see USGS OF Report 92-146, or USGS TWRI 5-A1/1979, p 453, NEMI method #: I-2610-91. DL= .012 mg/L.fe: 01046, Iron is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame, see USGS TWRI 5-A1/1985, NEMI method #: I-1381. DL= 10µg/L.h_ion: 00191, algor.h20_hardness: 00900, algor.h20_hardness_2: 00902, algor.hco3: 00440, algor.k: 00935, Potassium is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame , see USGS TWRI 5-A1/1989, p 393, NEMI method #: I-1630-85. DL= .01 mg/L.n_mixed: 00600, algor.n_mixed_1: 00602, algor.n_mixed_2: 71887, algor.nh3_nh4: 00608, Ammonia reacts with salicylate and hypochlorite ions in the presence of ferricyanide ions to form the salicylic acid analog of indophenol blue (Reardon and others, 1966; Patton and Crouch, 1977; Harfmann and Crouch, 1989). The resulting color is directly proportional to the concentration of ammonia present, See USGS OF 93-125, p 125/1986 (mg/l as N), NEMI Method #: I-2525. DL= .01 mg/L.nh3_nh4_1: 71846, algor.nh3_nh4_2: 00610, same method as 00608, except see USGS TWRI 5-A1/1989, p 321. DL = .01 mg/L.nh3_nh4_3: 71845, algor.no2: 00613, Nitrite ion reacts with sulfanilamide under acidic conditions to form a diazo compound which then couples with N-1-naphthylethylenediamine dihydrochloride to form a red compound, the absorbance of which is measured colorimetrically, see USGS TWRI 5-A1/1989, p 343, NEMI method #: I-2540-90. DL= .01 mg/L.no2_2: 71856, algor.no3: 00618, Nitrate is determined sequentially with six other anions by ion-exchange chromatography, see USGS TWRI 5-A1/1989, P. 339, NEMI method #: I-2057. DL= .05 mg/L.no3_2: 71851, algor.no32: 00630, An acidified sodium chloride extraction procedure is used to extract nitrate and nitrite from samples of bottom material for this determination(Jackson, 1958). Nitrate is reduced to nitrite by cadmium metal. Imidazole is used to buffer the analytical stream. The sample stream then is treated with sulfanilamide to yield a diazo compound, which couples with N-lnaphthylethylenediamine dihydrochloride to form an azo dye, the absorbance of which is measured colorimetrically. Procedure is used to extract nitrate and nitrite from bottom material for this determination (Jackson, 1958), see USGS TWRI 5-A1/1989, p 351. DL= .1 mg/Lno32_2: 00631, same as description for no32, except see USGS OF 93-125, p 157. DL= .1 mg/L.o18_o16_ratio: 82085, Sample preparation by equilibration with carbon dioxide and automated analysis; sample size is 0.1 to 2.0 milliliters of water. For 2-mL samples, the 2-sigma uncertainties of oxygen isotopic measurement results are 0.2 ‰. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. Water is extracted from soils and plants by distillation with toluene; recommended sample size is 1-5 ml water per analysis, see USGS Determination of the Determination of the delta (18 O or 16O) of Water, RSIL Lab Code 489.o2sat: Dissolved oxygen is measured in the field with a standard YSI multimeter, which also measures % oxygen saturation, NEMI Method #: NFM 6.2.1-Lum.ph_field: 00400, pH determined in situ, using a standard YSI multimeter, see USGS Techniques of Water-Resources Investigations, book 9, Chaps. A1-A9, Chap. A6.4 "pH," NEMI method # NFM 6.4.3.A-SW. DL= .01 pH.ph_lab: 00403, involves use of laboratory pH meter, see USGS TWRI 5-A1/1989, p 363, NEMI method #: I-1586.po4: 00660, algor, see NWIS User's Manual, QW System, Appendix D, Page 286.po4_2: 00671, see USGS TWRI 5-A1/1989, NEMI method #: I-2602. DL= .01 mg/L.s: 63719, cannot determine exact method used. USGS method code: 7704-34-9 is typically used to measure sulfur as a percentage, with an DL =.01 µg/L. It is known that the units for sulfur measurements in this data set are micrograms per liter.sar: 00931, algor, see NWIS User's Manual, QW System, Appendix D, Page 288.si: 00955, Silica reacts with molybdate reagent in acid media to form a yellow silicomolybdate complex. This complex is reduced by ascorbic acid to form the molybdate blue color. The silicomolybdate complex may form either as an alpha or beta polymorph or as a mixture of both. Because the two polymorphic forms have absorbance maxima at different wavelengths, the pH of the mixture is kept below 2.5, a condition that favors formation of the beta polymorph (Govett, 1961; Mullen and Riley, 1955; Strickland, 1952), see USGS TWRI 5-A1/1989, p 417, NEMI method #: I-2700-85. DL= .10 mg/L.spc: 00932, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds: 70300 and 70301, A well-mixed sample is filtered through a standard glass fiber filter. The filtrate is evaporated and dried to constant weight at 180 deg C, see " Filterable Residue by Drying Oven," NEMI method #: 160.1, DL= 10 mg/l. Note: despite DL values occur in the data set that are less than 10 mg/l.tds_1: 70301, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds_2: 70303, algor, see NWIS User's Manual, QW System, Appendix D, Page 290.tkn: 00625 and 99892, Block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and Mercury (II) at a temperature of 370°C. See the USGS Open File Report 92-146 for further details. DL: .10 mg/L.toc: 00680, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS TWRI 5-A3/1987, p 15, NEMI Method #: O-1122-92. DL=.10 mg/L.ton: 00605, algor, See NWIS User's Manual, QW System, Appendix D, page 286.tp: 00665 and 99891, This method may be used to analyze most water, wastewater, brines, and water-suspended sediment containing from 0.01 to 1.0 mg/L of phosphorus. Samples containing greater concentrations need to be diluted, see USGS TWRI 5-A1/1989, p 367, NEMI method #: I-4607. tp_2: 71886, algor.tpc: 00694, The basic steps of this test method are:1) Conversion of remaining IC to CO2 by action of acid, 2) Removal of IC, if desired, by vacuum degassing, 3) Split of flow into two streams to provide for separate IC and TC measurements, 4) Oxidation of TC to CO2 by action of acid-persulfate aided by ultraviolet (UV) radiation in the TC channel, 5) Detection of CO2 by passing each liquid stream over membranes that allow the specific passage of CO2 to high-purity water where change in conductivity is measured, and 6) Conversion of the conductivity detector signal to a display of carbon concentration in parts per million (ppm = mg/L) or parts per billion (ppb = ug/L). The IC channel reading is subtracted from the TC channel reading to give a TOC reading, see ASTM Standards, NEMI Method #: D5997. DL= .06 µg/L.tpn: 49570, A weighed amount of dried particulate (from water) or sediment is combusted at a high temperature using an elemental analyzer. The combustion products are passed over a copper reduction tube to covert nitrogen oxides to molecular nitrogen. Carbon dioxide, nitrogen, and water vapor are mixed at a known volume, temperature, and pressure. The concentrations of nitrogen and carbon are determined using a series of thermal conductivity detectors/traps, measuring in turn by difference hydrogen (as water vapor), carbon (as carbon dioxide), and nitrogen (as molecular nitrogen). Procedures also are provided to differentiate between organic and inorganic carbon, if desired, see USEPA Method 440, NEMI method #: 440. DL= .01 mg/L.
Short Name
TL-USGS-WEBB Data
Version Number
15

Historical Birge - Juday Lake Survey 1900 - 1943

Abstract
Data collected by Birge, Juday, and collaborators, mostly in north-central Wisconsin, from 1900 through 1943; generally one sampling event per lake during the summer, but on some lakes, especially around Trout Lake Station, several sampling events for several successive years. This data set contains both surface data (depth of zero) and multi-depth data. Note that not all variables were measured on all lakes. Documentation: Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).Wisconsin DNR Technical Report. Note: Values of -99999 in water quality data indicate trace amount of parameter was present. Number of sites: 663 (generally one sampling point per lake; occasionally, several sampling points per lake on multibasin, large lakes). Note: This data set was updated in 2013 to include multi-depth and additional surface data for a large subset of lakes. These additions expanded the number of sites from 605 to 663, and expanded the date range from 1925-1942 to 1900-1943 . Furthermore, 14 lakes in Minnesota were added to the data set contributing additional surface and multi-depth data. Another dataset was added in 2013 collected by Wisconsin limnologists Chauncey Juday and Edward Birge, this data set contains variables that are still commonly used in research. For example, temperature, dissolved carbon dioxide, color, pH, secchi disk, plankton, and silica. However, the data set also includes variables that are not commonly used, for example, crude protein, non-amino nitrogen, ether extract, and total organic and inorganic material. These data are characteristic of water chemistry analysis from the time in which they were compiled (5/31/1915 - 8/29/1938). The data set features data from 586 different lakes, primarily lakes in the Northern Highland Lakes District of Wisconsin. However, there is also data from lakes in southeastern and southcentral Wisconsin. Furthermore, there is a minimal amount of data from lakes in Minnesota, Ohio,New York, Alaska, the Philippines, and the United Kingdom. Documentation:Birge, E.A., and Juday, C. 1922. The inland lakes of Wisconsin. The Plankton I. Its quantity and chemical composition. Bulletin, Wis. Geol. and Nat. Hist. Survey No. 64: (Scientific series 13), ix-222.
Core Areas
Dataset ID
106
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).Wisconsin DNR Technical Report.Methods not included in Johnson (1984):Nitrite Nitrogen- Sulphanilic acid procedure. Standard methods for the examination of water and sewage, Pub. Health Assn., New York, 5th edition, 1923, 13. Other Documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Ferric Ion- First calculated by subtracting ferrous ion from total iron measurements. Standard methods of water analysis. 1936. Amer. Pub. Health Assoc. P. 309. New York. Procedure was modified to determine ferric ion by acidifying samples by adding 1 milliliter of 3 N HCL to 50mL of lake water. With the iron samples in readiness, add 5 ml of the thiocyanate solution to the sample and to the standards, mix and compare immediately. (Standard Methods, Amer. Public Health Assoc. 8th ed., p. 75, 1936). Other documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Ferrous Ion- First calculated by ferricyanide method. Procedure was modified to determine ferrous ion by subtracting ferric ion from total iron. Documentation: Domogalla, B.P., Juday, C., and Peterson, W.H. 1925. The forms of nitrogen found in certain lake waters. Jour. Biol. Chem. 63: 269-285.Manganese- Determined by the persulfate method using the procedure described in Standard Methods of Water Analysis, Amer. Public Health Assoc., p. 84, 1936.Chlorophyll-a- A photometric method was used, in which the color of the light was confined to the wave-length 6200-6800 A which are absorbed by chlorophyll. Water samples of 5 to 15 liters (18 liters in the case of very low plankton content) were taken from different depths by using a hand operated vacuum pump), the water was the centrifuged at 25,000 rpm (for about 30 minutes). Residue was then washed with 98percent acetone, and CaCO3 was added to neutralize organic acids. This residue-acetone mixture was ground to extract the chlorophyll. The acetone extract was then filtered through filter paper into a flask, the residue being thoroughly washed with pure acetone. The light absorption of the extract was then measured. Procedure was carried out in a single day, under minimal light. Documentation: Kemmerer, G.I., and Hallett, L.T. 1938. Amount and distribution of the chlorophyll in some lakes of northeastern Wisconsin. Trans. Wisconsin Acad. Sci. 31: 411-438.Phosphate- Ceruleomolybdic method employed. Documentation: Juday, C., Birge, E.A., Kemmerer, G.I., Robinson, R.J. 1927. Phosphorus content of lake waters of northeastern Wisconsin. Trans. Wisconsin. Acad. Sci. 23: 233-248. Other Documentation: Robinson, R.J., Kemmerer, G.I. 1930. Determination of organic phosphorus in lake waters. Trans. Wisconsin. Acad. Sci. 25: 117-121.Redox Potential- Determined in situ on a given sampling date by use of a bright platinum electrode. Eh readings were made in millivolts. Documentation: Allgeier, R.J., Hafford, B.C., and Juday, C. 1941. Oxidation-reduction potentials and pH of lake waters and lake sediments. Trans. Wisconsin Acad. Sci. 33: 115-133.Note: The methodology used to determine copper, alumnium, boron, and hydrogen sulfide could not be determined.
Short Name
RGBIJD
Version Number
7
Subscribe to nitrate nitrogen