US Long-Term Ecological Research Network

Wisconsin Lake Historical Limnological Parameters 1925 - 2009

Abstract
This dataset is a compilation of ten sources of data representing physical and chemical properties of 13,093 Wisconsin lakes. The goal was to compile a comprehensive resource of historical and more recent lake information which would be accessible by querying a single database. Due to the wide temporal extent (1925-2009), methods used for measuring lake parameters in this dataset have varied. A careful look at the available metadata and background information is recommended.Sampling Frequency: variesNumber of sites: 13,093
Contact
Dataset ID
263
Date Range
-
Maintenance
complete
Metadata Provider
Methods
1. Dataset: sr1 - Surface Water Resource Inventory (SWRI) Wisconsin. Temporal coverage: 1960-1980. Original description found in the preface of each Wisconsin Department of Natural Resources (WDNR) SWRI report, published by county.Data manipulation for incorporation into database: Original source of data is WDNR SWRI printed reports. An electronic version (MS Excel spreadsheet) of the data was available (the origin of this spreadsheet was unknown) and was used in preparation of this database. Some discrepancies observed between printed version and electronic version of the dataset: 1) in the printed reports, alkalinity is expressed either as methyl orange or methyl purple; varies from county to county. The electronic format does not contain any metadata or explanation regarding alkalinity. 2) in the printed reports, sometimes max depth provided, sometimes known depth, and sometimes Secchi depth- these values seem to have been transcribed as Secchi depth in the electronic dataset. 3) values of area, conductivity, alkalinity, and depth in electronic format have been rounded up from values in the books. 4) a field in the spreadsheet named "Cl" has no match in books and was not included in the final dataset. 5) color code was not defined in electronic format. It was deciphered and checked against a few lakes from different counties in the printed reports. Final color codes: 1 - Light brown. 2 - Medium brown. 3 - Dark brown. 4 - Clear. 5 - TurbidIssues specific to the electronic format: 13822 records originally. After eliminating all records without WBICs (Water Body Identification Code) or with duplicate WBICs, the dataset reduced to 12638 records with unique WBICs. Of these, 151 records (with area >10 acres) had no or zero data for some chemical parameters. Checked these records using WDNR SWRI reports. Eliminated any record that couldn't be resolved using the books and WDNR WBICs file.. Most records contain both alkalinity and conductivity data, although some do not contain both parameters. Final dataset sr1 has 12383 records2. Dataset: sr2 - Pieter Johnson. Temporal coverage: not specified. Original description: Combination of WDNR Register of Waterbodies (ROW) file, Wisconsin Lakes Book (wilk), and SWRI. Selected lakes with areas >= 10 acres, and lakes in at least 2 of the 3 datasets. Lakes with missing WBIC were not included. Lakes with missing surface area were not included.Data manipulation for incorporation into database: Received original dataset from Jake Vander Zanden (UW-Madison, Center Data manipulation for incorporation into database: Received original dataset from Jake Vander Zanden (UW-Madison, Center for Limnology). The dataset was used in the following publication: Johnson, P.T., J.D. Olden, M.J. Vander Zanden. 2008. Dam invaders: impoundments facilitate biological invasions in freshwaters. Frontiers in Ecology and the Environment 6:357-363. Original dataset contained 5213 records; . Eliminated 8 records without WBIC, legal (TRS) description, and no values for lake characteristics. Note: Many records are repeated from sr1 dataset. Final dataset sr2 has 5205 records.3. Dataset: sr3 - Biocomplexity Project. Temporal coverage: 2001-2004. Original description: Data Set Title: Biocomplexity; Coordinated Field Studies: Chemical Limnology. Investigators: Steve R. Carpenter, Jim Kitchell, Timothy K. Kratz, John J. Magnuson. Contact:NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; 62 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year)Data manipulation for incorporation into database: Original dataset had 62 records. Replicate samples per lake averaged to single measurements. Two records represented a single lake (Little Rock, North and South basins); these were merged into one record. Final dataset sr3 has 61 records.4. Dataset: sr4 - Landscape Position Project. Temporal coverage: 1998. Original description: Data Set Title: Landscape Position Project: Chemical Limnology. Investigators: Ben Greenfield, Thomas Hrabik, Timothy K. Kratz, David Lewis, Amina Pollard, Karen Wilson. Contact: NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-890-3446;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Parameters characterizing the chemical limnology and spatial attributes of 51 lakes were surveyed as part of the Landscape Position Project.Data manipulation for incorporation into database: WBICs added. Ward Lake removed from data. Parameters values over multiple sampling events were averaged. Info regarding depth at which samples were taken was not retained. Final dataset sr4 has 50 records.5. Dataset: sr5 - Lillie and Mason. Temporal coverage: 1979. Original description: printed report WI DNR Technical Bulletin no.138. 1983. Limnological characteristics of Wisconsin LakesData manipulation for incorporation into database: Original file containing 667 records received from Paul Garrison (WDNR). 88 records lacked WBICs but 65 of these were assigned using WDNR lakes shapefile, matching names and areas of lakes. Final 23 records without WBICs were removed. Note: Since lake / impoundment classification doesn't seem to match Johnson's dataset (sr2), it was not included. Note from Richard Lathrop (WDNR): total P measurements are probably unreliable due to method used not being sensitive enough. Final dataset sr5 has 644 records.6.Dataset: sr6 - EPA- Eastern Lakes Survey (1984): Temporal coverage: 1984. Original description: Data Set Title: National Surface Water Survey: Eastern Lake Survey-Phase I. The Eastern Lake Survey-Phase I (ELS-I), conducted in the fall of 1984, was the first part of a long-term effort by the U.S. Environmental Protection Agency known as the National Surface Water Survey. It was designed to synoptically quantify the acid-base status of surface waters in the United States in areas expected to exhibit low buffering capacity. The effort was in support of the National Acid Precipitation Assessment Program (NAPAP). The survey involved a three-month field effort in which 1612 probability sample lakes and 186 special interest lakes in the northeast, southeast, and upper Midwest regions of the United States were sampled.Data manipulation for incorporation into database: Original dataset, downloaded from EPA website, has over 100 parameters. Only a small subset of interest was retained. Original documentation for full dataset available is available. Dataset includes 285 Wisconsin lakes. WBICs were assigned using geographic coordinates from dataset. WBIC for one lake could not be determined and was excluded.. Note regarding conductivity parameter: value represents calculated conductivity, as the sum of concentrations of each major cation and anion. It is not a parameter measured in the field or lab. Actual formula used to calculated conductivity was not discovered. Final dataset sr6 has 284 records7. Dataset: sr7 - Environmental Research Lab Duluth (ERLD). Temporal coverage: 1979-1982. Original description: ERLD Lake Survey. Contact(s): NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Chemical survey of 832 lakes in Minnesota, Michigan, Wisconsin and Ontario conducted by ERL-Duluth and UMD between 1979 and 1982 for evaluation of trophic state and sensitivity to acid deposition Glass, G.E. and Sorenson, J.A. (1994) USEPA ERLD-UMD acid deposition gradient-susceptibility database. U.S. EPA Environmental Research Laboratory - Duluth and University of Minnesota at Duluth, MN.Data manipulation for incorporation into database: Dataset included 428 Wisconsin records for which WBICs were included. Note: Original dataset had several errors in WBIC assignment: 1179900 was assigned to three different water bodies; correct WBICs are: 1503000, 1502400, 1481100; also 1515800 changed to 1516000. Lake Clara had 5 different stations for most parameters sampled. First station that had values for all parameters was included in final dataset. Final dataset sr7 has 428 records.8. Dataset: sr8 - Birge-Juday Historical Dataset. Temporal coverage: 1925-1941. Original description: Birge-Juday Historical Lake Data. Investigator(s): Edward A. Birge, Chauncy Juday. Contact: NTL LTER Information Manager; Center for Limnology, 680 N Park St, Madison, WI, 53706-1492, USA;(phone) 608-262-2573;(fax) 608-265-2340;(email) infomgr@lter.limnology.wisc.edu; Data collected by Birge, Juday, and collaborators, mostly in north-central Wisconsin, from 1925 through 1941; generally one sample per lake during the summer, but on some lakes, especially around Trout Lake Station, samples were taken on several successive years. Note that not all variables were measured on all lakes (scarce data for nutrients and ions). Documentation: Johnson, M.D. (1984) Documentation and quality assurance of the computer files of historical water chemistry data from the Wisconsin Northern Highland Lake District (the Birge and Juday data).WDNR Technical Report. Number of sites: 608 (generally one sampling point per lake; occasionally, several sampling points per lake on multibasin, large lakes).Data manipulation for incorporation into database: Original dataset downloaded from UW-Madison, Center for Limnology LTER website. Values averaged for lakes with multiple samples. WBICs assigned to 577 lakes via GIS spatial join using site coordinates and WDNR lake shapefile. Note from Johnson, M.D. (1984): the units for alkalinity (fixed CO2) changed from cc/L to mg/L sometime between Aug 1926 and May 1927. 17 entries were originally cc/l. Thus there might be inconsistencies in the alkalinity data. Final dataset sr8 has 577 records.9. Dataset: sr9 - USGS National Water Inventory System (NWIS). Temporal coverage: 1969-2009. Original description: U.S. Geological Survey. This file contains selected water-quality data for stations in the National Water Information System water-quality database (http://nwis.waterdata.usgs.gov/nwis/). Explanation of codes found in this file are followed by the retrieved data. The data you have secured from the USGS NWIS Web database may include data that have not received Director's approval and as such are provisional and subject to revision. The data are released on the condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use.Data manipulation for incorporation into database: Data downloaded for 240 lakes for the following parameters: calcium, conductivity, alkalinity, pH. Original parameter codes (USGS NWIS schema): p00915 p00095 p00400 p00916 p29801 p39086 p90095. Data are averaged for multiple measurements. WBICs assigned via GIS spatial join using site coordinates and WDNR lake shapefile. Final dataset sr9 has 240 records.10. Dataset: sr10 - WI Department of Natural Resources (WDNR) Temporal coverage: 1969-2009 Original description: available at http://dnr.wi.gov/org/water/swims/Data manipulation for incorporation into database: Original data received from Jennifer Filbert (WDNR). Data were extracted from WDNR Surface Water Integrated Monitoring System (SWIMS) database (http://dnr.wi.gov/org/water/swims/). Lakes represented had one or more of the following parameters: Secchi depth, calcium, conductivity, alkalinity, pH, total P, turbidity,, chlorophyll a. Data were averaged where multiple measurements were available. Final dataset sr10 has 53 records.The Data Source data table contains a summary of the 10 data sources with information on temporal coverage and record counts. It also includes information on the availability of calcium and conductivity data from the data sources.
Short Name
WILIMN1
Version Number
25

North Temperate Lakes LTER: Color - Trout Lake Area 1989 - current

Abstract
Color is measured four times per year in the seven northern study lakes (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes, unnamed lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog]) on water samples that are filtered in the field through 0.45 micron capsule filters (0.45 um nuclepore membrane filters before 2015). A spectrophotometer is used to quantify color in the lab as absorbance units, at 1nm intervals between the wavelengths of 200 and 800 nm. All values are given as measurements at the path length of the employed cuvette and should be divided by the cuvette length for a comparable value at a pathlength of 1 cm. Sampling Frequency: 4 times annually. Number of sites: 7.
Dataset ID
87
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Water samples for color are collected at the deepest part of the lake four times per year: February under ice, spring mixis, August stratification, and fall mixis. The samples are surface water collected with a peristaltic pump and tubing, filtered in the field through 0.45 micron capsule filters ( 0.45u polycarbonate membrane filters before 2015). A wavelength scan from 800 to 200nm is run, using a 5cm rectangular quartz cell in a Beckman Coulter Model DU800 single beam spectrophotometer. Any samples that display absorbance values above 2AU are run again from 400 to 200nm using a 1cm quartz cuvette, as values above 2AU are not considered valid. Blank values in the dataset are from a deionized water scan run as a first sample after instrument blanking, and are reported alongside the scans but are not subtracted from the scan values.
Protocol Log: 1990 -- Scans run using a 10cm cylindrical cell on a Kontron spectrophotometer. 2001 -- we added scans in a 1cm cell for samples with absorbance greater than 2AU. July 2008 -- changed to Beckman Coulter DU800 spectrophotometer, and changed from 10cm to 5cm cell.
Short Name
NTLPH07
Version Number
32

Landscape Position Project at North Temperate Lakes LTER: Chemical Limnology 1998 - 2000

Abstract
Parameters characterizing the chemical limnology and spatial attributes of 51 lakes were surveyed as part of the Landscape Position Project. Parameters are measured at or close to the deepest part of the lake. The following parameters are measured one meter from the surface and two meters from the bottom of the lake: pH, total phosphorus, total nitrogen, total silica. The following parameters are measured one meter from the surface: dissolved organic carbon, total organic carbon, dissolved inorganic carbon, total inorganic carbon, spectrophotometric absorbance (color scan), major anions and cations, alkalinity. Sampling Frequency: once for conservative parameters (major ions, carbon, color, alkalinity); monthly for one summer for other parameters (chlorophyll, nitrogen, phosphorus, pH, silica, temperature, dissolved oxygen, and conductivity) Number of sites: 51Allequash Lake, Anderson Lake, Arrowhead Lake, Beaver Lake, Big Lake, Big Crooked Lake, Big Gibson Lake, Big Muskellunge Lake, Boulder Lake, Brandy Lake, Crampton Lake, Crystal Lake, Diamond Lake, Flora Lake, Heart Lake, Ike Walton Lake, Island Lake, Johnson Lake, Katherine Lake, Kathleen Lake, Katinka Lake, Lehto Lake, Little Crooked Lake, Little Muskie, Little Spider Lake, Little Sugarbush Lake, Little Trout Lake, Lower Kaubeshine Lake, Lynx Lake, McCullough Lake, Mid Lake, Minocqua Lake, Muskesin Lake, Nixon Lake, Partridge Lake, Randall Lake, Round Lake, Sanford Lake, Sparkling Lake, Statenaker Lake, Stearns Lake, Tomahawk Lake, Trout Lake, Upper Kaubeshine Lake, Verna Lake, Ward Lake, White Birch Lake, White Sand Lake, Wild Rice Lake, Wildcat Lake, Wolf Lake, Vilas County, WI, Iron County, WI, Oneida County, WI, Gogebic County, MI, USA
Dataset ID
91
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Chloride, SulfateSamples for chloride and sulfate are collected together with a peristaltic pump and tubing and in-line filtered (through a 0.40 micron polycarbonate filter) into new, 20 ml HDPE plastic containers with conical caps. The samples are stored refrigerated at 4 degrees Celsius until analysis, which should occur within 6 months. The samples are analyzed for chloride (and sulfate) simultaneously by Ion Chromatography, using a hydroxide eluent.The detection limit for chloride is approximately 0.01 ppm and the analytical range for the method extends to 100 ppm.The detection limit for sulfate is approximately 0.01 ppm and the analytical range for the method extends to 60 ppm.Method Log: Prior to January 1998 samples, chloride was determined on a Dionex DX10 Ion Chromatograph, using a chemical fiber suppressor. From 1998 to 2011, chloride was determined by a Dionex model DX500, using an electro-chemical suppressor. From January 2011 until present, chloride is determined by a Dionex model ICS 2100 using an electro-chemical suppressor.Calcium, silicon, magnesium, sodium, potassium, iron, and manganeseSamples for calcium analysis (as well as dissolved nitrogen and phosphorus, silicon, magnesium, sodium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1percent HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab. Once acidified, the samples are stable at room temperature until analysis, which should occur within one year. Until acidification, the samples should be refrigerated at 4 degrees Celsius.Calcium, as well as magnesium, sodium, potassium, iron, and manganese are analyzed simultaneously on an optical inductively-coupled plasma emission spectrophotometer (ICP-OES). The acidified samples are directly aspirated into the instrument without a digestion. Calcium is analyzed at 317.933 nm and at 315.887 nm and viewed axially for low-level analysis and radially for high level analysis.The detection limit for calcium is 0.06 ppm with an analytical range of the method extends to 50 ppm.The detection limit for iron is 0.02 ppm with an analytical range of the method extends to 20 ppm.The detection limit for magnesium is 0.03 ppm with an analytical range of the method extends to 50 ppm.The detection limit for manganese is 0.01 ppm with an analytical range of the method extends to 2 ppm.The detection limit for potassium is 0.06 ppm with an analytical range of the method extends to 10 ppm.The detection limit for sodium is 0.06 ppm with an analytical range of the method extends to 50 ppm.Method Log: Prior to January 2002, Calcium, magnesium, sodium, potassium, iron, and manganese were determined on a Perkin-Elmer model 503 Atomic Absorption Spectrophotometer. Lanthanum at a 0.8percent concentration was added as a matrix modifier to suppress chemical interferences. From January 2002 to present, samples are analyzed for calcium on a Perkin-Elmer model 4300 DV ICP.Dissolved reactive silica is determined by the Heteropoly Blue Method and the absorption is measured at 820 nm.The detection limit for silicon is 6 ppb and the analytical range is 15000 ppb.Method Log These determinations were performed manually using a Bausch and Lomb Spectrophotometer from the beginning of the project until April 1984. From 1984 through 2005, dissolved reactive silicon was determined on a Technicon Auto Analyzer II. From January 2006 to present, samples are run on an Astoria-Pacific Astoria II Autoanalyzer.
Short Name
LPPCHEM1
Version Number
9

Biocomplexity at North Temperate Lakes LTER; Coordinated Field Studies: Color 2001 - 2004

Abstract
Chemical Limnology data collected for Biocomplexity Project; Landscape Context - Coordinated Field Studies Replicate chemical samples were pumped from the surface water (0.5m depth) and secchi depth was recorded at each lake. Temperature/dissolved oxygen profiles were taken throughout the water column at one meter intervals on all lakes. For more detail see the Water Sampling Protocol. Sampling Frequency: During 2001, temperature/dissolved oxygen profiles and secchi depths were taken twice during the stratified summer period. Chemistry samples were only taken once during the 2001 stratified period. From 2002 through 2004, all chemical and physical water samples were taken once during June (or resampled during the stratified period if June samples were bad). All lakes in which color, DIC/DOC, and chlorophyll samples were taken in 2001 were resampled in 2002 due to error in collection and/or analysis. Number of sites: 62 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year).Allequash Lake, Anvil Lake, Arrowhead Lake, Bass Lake, Big Lake, Birch Lake, Ballard Lake, Big Muskellunge Lake, Black Oak Lake, Big Portage Lake, Brandy Lake, Big St Germain Lake, Camp Lake, Crab Lake, Circle Lily, Carpenter Lake, Day Lake, Eagle Lake, Erickson Lake, Escanaba Lake, Found Lake, Indian Lake, Jag Lake, Johnson Lake, Jute Lake, Katinka Lake, Lake Laura, Little Croooked Lake, Little Spider Lake, Little St Germain Lake, Little Crawling Stone Lake, Little John Lake, Lac Du Lune Lake, Little Rock Lake - North, Lost Lake, Little Rock Lake - South, Little Star Lake, Little Arbor Vitae Lake, Lynx Lake, Mccollough Lake, Moon Lake, Morton Lake, Muskellunge Lake, Nebish Lake, Nelson Lake, Otter Lake, Oxbow Lake, Palmer Lake, Pioneer Lake, Pallete Lake, Papoose Lake, Round Lake, Star Lake, Sparkling Lake, Spruce Lake, Stormy Lake, Twin Lake South, Tenderfoot Lake, Towanda Lake, Upper Buckatabon Lake, Vandercook Lake, White Sand Lake, Vilas County, WI, USA
Dataset ID
42
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Environmental Sampling and Analysis: Physical, chemical and biological samples were taken above the deepest point in each lake during the summer stratification period (June, July, or August). Water samples were collected from one half meter depth using a peristaltic pump, and were analyzed for pH, alkalinity, specific conductance, water color, chlorophyll-a, dissolved organic and inorganic carbon, total phosphorus, and total nitrogen (Appendix Table 1). Secchi depth, temperature and dissolved oxygen profiles, and vertical plankton tows were also taken at the deepest point. Temperature and dissolved oxygen concentrations (DO) were measured through the water column at 1 meter increments.. Conductivity, TP-TN, alkalinity and pH water samples were collected unfiltered while water for DIC-DOC and color water samples was filtered through nucleopore polycarbonate filters. Alkalinity, pH, and DIC-DOC samples were filled to the top and sealed quickly to prevent CO2 loss or invasion. Samples containing air bubbles were recollected. Chlorophyll samples were collected on glass fiber filters in the field. Water chemistry and chlorophyll a analyses were done at the Trout Lake Biological Station, Boulder Junction, WI except for TP, TN, DIC and DOC samples, which were analyzed at the Center for Limnology-Lake Mendota Laboratory, Madison, WI.
Short Name
BIOCOLR1
Version Number
7
Subscribe to lake color