US Long-Term Ecological Research Network

Little Rock Lake - CWH Study at North Temperate Lakes LTER - Benthic Macroinvertebrates 2002 - 2004

Abstract
Benthic invertebrates were collected as part of CWH (coarse woody habitat) study on Little Rock Lake in Vilas county, WI. Pre-manipulation sampling of the macroinvertebrate communities was conducted in the summer of 2002 before the CWH reduction and six times after the reduction, in early, mid, and late summer (May-August) of 2003 and 2004. We divided the shoreline of Little Rock Lake into 50 m sections and randomly chose five sections from each basin for each separate sampling of macroinvertebrates. We collected two benthos and two CWH macroinvertebrate samples at each section. We constructed a benthos sampler by connecting a SCUBA tank to a 7.6 cm PVC pipe with a hose attached 10 cm from one end of the pipe (Wahle and Steneck 1991; Roth et al. 2007). A 500 m Nitex mesh bag was place at the top end of the pipe furthest from the attached hose. Once the tank was turned on, a vacuum formed that sucked the benthos sample into the bag. We used a 0.09 m2 hoop to delineate the benthos sampling area. We sampled CWH using a self-contained, battery-powered aquatic vacuum with a 500 m Nitex mesh bag (Vander Zanden et al. 2006). Sampling lasted for 30 seconds. All samples were stored in 95% ethanol until processed. Macroinvertebrates were identified to the lowest possible taxonomic level. Helmus M.R. and Sass G.G. (2008) The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. Freshwater Biology, 53, 1423-1433 Number of sites: 44 Sampling Frequency: once pre-manipulation, 6 sampling regimes after reduction
Core Areas
Dataset ID
230
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
Benthic invertebrates were collected as part of CWH (coarse woody habitat) study on Little Rock Lake in Vilas county, WI. Pre-manipulation sampling of the macroinvertebrate communities was conducted in the summer of 2002 before the CWH reduction and six times after the reduction, in early, mid, and late summer (May-August) of 2003 and 2004. We divided the shoreline of Little Rock Lake into 50 m sections and randomly chose five sections from each basin for each separate sampling of macroinvertebrates. We collected two benthos and two CWH macroinvertebrate samples at each section. We constructed a benthos sampler by connecting a SCUBA tank to a 7.6 cm PVC pipe with a hose attached 10 cm from one end of the pipe (Wahle and Steneck 1991; Roth et al. 2007). A 500 m Nitex mesh bag was place at the top end of the pipe furthest from the attached hose. Once the tank was turned on, a vacuum formed that sucked the benthos sample into the bag. We used a 0.09 m2 hoop to delineate the benthos sampling area. We sampled CWH using a self-contained, battery-powered aquatic vacuum with a 500 m Nitex mesh bag (Vander Zanden et al. 2006). Sampling lasted for 30 seconds. All samples were stored in 95% ethanol until processed. Macroinvertebrates were identified to the lowest possible taxonomic level. Helmus M.R. and Sass G.G. (2008) The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. Freshwater Biology, 53, 1423-1433 Number of sites: 44 Sampling Frequency: once pre-manipulation, 6 sampling regimes after reduction
Short Name
HELMUS1
Version Number
25

Biocomplexity at North Temperate Lakes LTER; Coordinated Field Studies: Coarse Woody Habitat Data 2001 - 2009

Abstract
These data were collected to test for changes in the population dynamics and the food webs of the fish populations of Little Rock and Camp lakes, Vilas County, WI, USA. Little Rock Lake was the site of a whole-lake removal of coarse woody habitat in 2002 and Camp Lake was the site of a whole-lake coarse woody habitat addition in 2004. Sampling began in May of 2001 and ended in August of 2006. Some sampling was repeated from 2007 to 2009. Number of sites: 4. Two lakes with reference and treatment basin in each lake.
Core Areas
Dataset ID
215
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Fish were collected by beach seining, hook and line angling, and minnow traps. Commonly captured species were largemouth bass, bluegill, yellow perch, rock bass, and black crappie. Population Estimates: Chapman-modified continuous Schnabel mark-recapture population estimates were conducted on each basin of Little Rock and Camp lakes annually. Adult population estimates for largemouth bass, yellow perch, rock bass, and black crappie were calculated for Little Rock Lake during 2001-2006. All fish were captured by hook and line angling, minnow traps, and beach seining. Adult population estimates for largemouth bass and bluegill were calculated for Camp Lake during 2002-2006. All fish were captured by hook and line angling and beach seining. Fish Length/Weight Tag data: Length, weight, and mark data was recorded for all fish used to collect diet information. Diet information was collected from up to 15 individuals of each species biweekly May-September using gastric lavage. Diet information was collected from largemouth bass, yellow perch, rock bass, and black crappie in Little Rock Lake from 2001-2005 and 2007 - 2009. Diet information was collected from largemouth bass and yellow perch in Camp Lake from 2002-2005. Fish Length Tag data: Length and mark data was recorded for all fish used to calculate the mark-recapture population estimates. Length and the mark were recorded from all fish captured in Little Rock and Camp lakes from 2001-2006. Length and mark data exists for all fishes collected in Little Rock Lake from 2001-2006 and 2007 - 2009. Fish species from Little Rock include largemouth bass, yellow perch, rock bass, and black crappie. Length and mark data exists for all fishes collected in Camp Lake from 2002-2006. Fish species from Camp Lake include largemouth bass, yellow perch, and bluegill. All fish were captured by beach seining, hook and line angling, and minnow traps. Minnow trap CPUE: Minnow traps were the most effective gear for capturing yellow perch on Little Rock Lake. Standardized minnow trapping was conducted on both basins of Little Rock Lake in 2003-2005. In 2003, 10 minnow traps in each basin were deployed biweekly and picked twice per week. In 2004-2005, 20 minnow traps in each basin were deployed biweekly and picked twice per week. Catch per unit effort was calculated as catch of yellow perch per trap. Age Growth Rates: Growth rates were calculated for a subset of fish collected from Little Rock Lake (2001-2004) and Camp Lake (2002-2005). Back-calculated growth rates from five fish from every 10 mm size increment were examined. In the process, age was determined from scale samples and length at each annulus was back-calculated. Size-specific growth rates were calculated based on the relationship between fish length at age and ln transformed growth rate at age. Back-calculated growth information was assessed from largemouth bass, yellow perch, rock bass, and black crappie in Little Rock Lake. Back-calculated growth information was assessed from largemouth bass and bluegill in Camp Lake.
Short Name
BIOSASS1
Version Number
9

Biocomplexity at North Temperate Lakes LTER; Coordinated Field Studies: Riparian Plots 2001 - 2004

Abstract
Living and dead trees and abiotic and anthropogenic characteristics of the shoreline were surveyed at 488 sites around lakes in Vilas County. These data were collected as part of the "cross-lake comparison" segment of the Biocomplexity Project (Landscape Context - Coordinated Field Studies). The study explored the links between terrestrial and aquatic systems across a gradient of residential development and lake landscape position. Specifically, this project attempted to relate the abundance of coarse wood in the littoral zone with abiotic, biotic and anthropogenic features of the adjacent shore. At each of the 488 sites, three 100 sq m plots, extending from the shoreline 10 m inland, were sampled. Additional plots farther inland were sampled at some sites. At each plot the survey team recorded the general appearance of the plot, measured all trees at least 5 cm dbh, measured and described downed wood and snags at least 10 cm in diameter, and recorded any overhanging trees. Saplings (at least 30 cm tall, but less than 5 cm dbh) were counted in two 5m x 5m plots per site. Sampling Frequency: each site sampled once Number of sites: 488 sites on 61 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year; eight sites per lake).Allequash Lake, Anvil Lake, Arrowhead Lake, Bass Lake, Big Lake, Birch Lake, Ballard Lake, Big Muskellunge Lake, Black Oak Lake, Big Portage Lake, Brandy Lake, Big St Germain Lake, Camp Lake, Crab Lake, Circle Lily, Carpenter Lake, Day Lake, Eagle Lake, Erickson Lake, Escanaba Lake, Found Lake, Indian Lake, Jag Lake, Johnson Lake, Jute Lake, Katinka Lake, Lake Laura, Little Croooked Lake, Little Spider Lake, Little St Germain Lake, Little Crawling Stone Lake, Little John Lake, Lac Du Lune Lake, Little Rock Lake - North, Lost Lake, Little Rock Lake - South, Little Star Lake, Little Arbor Vitae Lake, Lynx Lake, Mccollough Lake, Moon Lake, Morton Lake, Muskellunge Lake, Nebish Lake, Nelson Lake, Otter Lake, Oxbow Lake, Palmer Lake, Pioneer Lake, Pallete Lake, Papoose Lake, Round Lake, Star Lake, Sparkling Lake, Spruce Lake, Stormy Lake, Twin Lake South, Tenderfoot Lake, Towanda Lake, Upper Buckatabon Lake, Vandercook Lake, White Sand Lake, Vilas County, WI, USA
Dataset ID
126
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
Riparian samplingPREPARATIONDatasheet packets:Each lake has 8 survey sites.One packet per site:3 10m x 10m riparian zone plot data sheets1 Sapling plot or General Site Info data sheetFor 2 of the 8 sites, packets will need to include 2 riparian subzone data sheets.Weather can be highly variable. Data sheets should be printed on write in rain paper.Survey site selections:8 Sites per lake will be selected using GIS software.Subzones: To look at the effects of wind, sun, and fetch; select 2 of the 8 sites for additional subzone surveys. One site must be located in the NW quarter of the lake and the other in the SE. Within each of these 2 chosen sites, randomly select a 10m x 10m subzone plot in zone 2 and another 10m x 10m subzone plot in zone 3. (See figure 1).Sapling plots: At each site, two 5m x 5m sapling plots should be randomly selected within plots A, C, andoror E (Refer to figure 3).EQUIPMENT LISTClipboard, data sheet packets, lake and site maps, pencils, watch, compass, 50m measuring tapes, Diameter tapes (fabric and combination tapes), flagging, GPS unit,Oars, cushions and vests, motor, gas. Appropriate rain gear and boots.FIELD DATA COLLECTIONRecord the lake name, site number, plot number, date, observers, start and stop time.Collect a GPS point at the start of each of the 8 survey sites (plot A).timesIf the site has to be relocated due to denied permissions, mark new location on lake maps.Prepare Survey Plots:Each site is 30m x 50m in size. Five 10mx10m plots along shoreline are the zone 1 survey plots. Subzones are located in Zones 2 and 3. Plots should never overlap.Set up plots (A, C, E)Facing the selected site location (looking from the water towards shore), plot A is on the left, C and E are to the right of A respectively.Mark the sites starting point (with a flag and a GPS point). Using a meter tape to place flags at 10m increments along the shorelines ordinary high water mark (0m, 10m, 20m, 30m, 40m, 50m).For each 10x10 plot, determine the shoreline aspect, then use a compass and meter tape to place corner flags back 10 meters from shore so that each plot is square.Record the slope and aspect (perpendicular to shore) for the start of plots A, C, and E. This will represent the hills steepness and direction.Recording Data:General site info:Site information must be recorded for all 5 plots (A, B, C, D, and E)Record ownership (public or private).List the number of docks and buildings –count them only once if they cross into 2 plots.Presenceorabsence information – Using the list provided, check anything that is present, or list it as other. Record what is dominant. There are 2 parts to the General site info list:Qualitative assessment of habitat (forest stands, herbaceous, wetlands, etc).Human development andoror disturbance.FOR PLOTS A, C, and E:Live Trees:Record the species and diameter at breast height (DBH) for every living tree that is larger or equal to 5cm DBH (other woody plants having a greater than or equal to 5cm DBH should also be recorded).Diameter at breast height: Since trees are swelled at the base, measurements are made 4.5 feet (1.37 meters) above the ground in order to give an average diameter estimate.Trees on plot edge: Sometimes trees will be questionable as to whether they are in or out of the plot. Good rule of thumb is a 50percent cut off. If the tree is more than 50percent within the plot, count it. Do not count 1 tree in more than one plot!Standing snags: A snag is a (or part of a) dead standing tree taller than 1.37 meters (DBH). If a snag is greater than or equal to 10cm DBH then record type (snag), type of break (natural, un-natural, beaver), species (if known), DBH, and branchiness (0-3).Stumps: A stump is dead tree cut or broken off below 1.37 meters (DBH). Record stumps that are greater than or equal to 10cm in diameter. Take the diameter at the base of the stump but above the root mass. Record type (stump), type of break (natural, un-natural, beaver), species (if known), and diameter at base. Branchiness is assumed to be 0.Coarse Woody Debris (CWD) in Riparian zone:For this study, CWD is considered any logs greater than or equal to 10cm in diameter and greater than or equal to 150cm in length.Record type (log) and type of break (natural, un-natural, beaver, unknown). Record the species type (species, conifer, hardwood, or unknown), the diameter at base, and log length from base to longest branch tip.Record Branchiness (0-3). Where 0 is no branches, 1 is few, 2 is moderate, and 3 is many branches.Record Decay (0-5). Where 0 is a live tree touching the ground at two or more points, 1 is recent downwood (e.g. lacking litter or moss cover), 2 is downwood with litterorhumus or moss cover; bark sound, 3 is bark sloughing from wood; wood still sound, 4 is downwood mostly barkless; staubs loosening; wood beginning to decay; logs becoming oval and in contact with the ground along most of their length, and 5 is decay advanced; pieces of wood blocky and softened; logs becoming elliptically compressed. timestimes NOTE: paper birch retains its bark long after the wood has rotted, score logs of this species by the softness of the wood, not the presenceorabsence of bark. timestimesAdditional parameters:If a log extends out of a plot, record its entire length and measure diameter at the base regardless of whether the base is inside or outside of the plot.If a log crosses into more than one plot, record the entire length and measure diameter at the base, but record log only in the plot where the base is (if the base is outside of the site, then record in the plot closest to the base).Paper birch: often are broken into many small parts. If segments are still in line (no more than ~5 cm separating them), then you can count breaks as a single log.Logs that extend over the water are measured only from the base to the shoreline and listed in notes as measured to water.For each site, Two 5m x 5m sapling plots are randomly selected in plots A, C, andoror E. Use the numbering scheme depicted in graphic.Use compass and meter tape to setup and mark square plots using the original plot aspect.For each sapling plot, count and record all tree saplings greater than 30 centimeters in height but having less than a 5 cm DBH.Subzones:Subzone plot data are recorded the same as plot data.Refer to figure 1 to set up random subplots at 2 of the 8 sites at a lake. Use compass and meter tape to setup and mark square subplots. Use the original plot aspect when possible.For each square 10m x 10m subplot (one in zone 2 and one in zone 3) record slope and aspect.Record all live trees that have greater than or equal to 5cm DBH. Record all stumps greater than or equal to 10cm DBH and snags greater than or equal to 10cm diameter at base. Record logs greater than or equal to 10cm in diameter and greater than or equal to 150cm in length.
Short Name
BIORPLOT
Version Number
9

Biocomplexity at North Temperate Lakes LTER; Coordinated Field Studies: Littoral Plots 2001 - 2004

Abstract
In 2001 - 2004 the abundance of coarse wood and other aspects of the physical structure of the littoral zone were surveyed along transects that followed the 0.5 m depth contour at 488 sites in Vilas County. These data were collected as part of the "cross-lake comparison" segment of the Biocomplexity Project (Landscape Context - Coordinated Field Studies). The study explored the links between terrestrial and aquatic systems across a gradient of residential development and lake landscape position. Specifically, this project attempted to relate the abundance of Coarse Wood in the littoral zone with abiotic, biotic and anthropogenic features of the adjacent shoreline. Each of the 488 sites was a 50 m stretch of shoreline. The transects started and ended at the beginning and end of the site; the length of each transect, therefore, varied. Logs which were at least 150 cm in length were counted; more detailed descriptions were taken of logs at least 10 cm in diameter and 150 cm long. Information on littoral and shoreline substrate was also collected. Sampling Frequency: each site sampled once Number of sites: 488 sites on 61 Vilas County lakes were sampled from 2001-2004 (approximately 15 different lakes each year; eight sites per lake).
Dataset ID
125
Date Range
-
Maintenance
completed
Metadata Provider
Methods
In 2001 - 2004 littoral habitat, fish and macrophyte surveys were performed at eight sites within each of the 55 lakes. The sites were chosen by randomly selecting two points per compass quadrant of each lake. Each year littoral habitat surveys were conducted in June, fish surveys in July and macrophyte surveys in August.Littoral habitat (substrate and coarse woody habitat) was measured along a 50 m transect parallel to shore along the 0.5 meter depth contour at each site. The two Littoral CWH variables (number of logs km-1 greater than 5 cm diameter, and number greater than 10 cm) were transformed by log of (1+number) to normalize the variables.
Short Name
BIOLPLOT
Version Number
7
Subscribe to coarse woody habitat