US Long-Term Ecological Research Network

Spatially Distributed Lake Mendota EXO Multi-Parameter Sonde Measurements Summer 201

Abstract
This data was collected over 9 sampling trips from June to August 2019. 35 grid boxes were generated over Lake Mendota. Before each sampling effort, sample point locations were randomized within each grid box. Surface measurements were taken with an EXO multi-parameter sonde at the 35 locations throughout Lake Mendota during each sampling trip. Measurements include temperature, conductivity, chlorophyll, phycocyanin, turbidity, dissolved organic material, ODO, pH, and pressure.
Core Areas
Dataset ID
388
Date Range
-
Maintenance
ongoing
Methods
Conducted weekly data sampling (9 boat trips in June-August 2019) using an EXO multi-parameter sonde to collect temperature, conductivity, chlorophyll (ug/L), phycocyanin (ug/L), turbidity, dissolved organic material, ODO, pH, and pressure at 35 locations based on GPS guided stratified random sampling. 35 grid boxes were generated over Lake Mendota using qGIS. Point locations within each grid box were randomized before each sampling effort. At each point, variables were recorded continuously with the EXO sonde for a two-minute period. Continuous data was overaged over the two-minute period for each sample point.
Publication Date
Version Number
1

North Temperate Lakes LTER Regional Survey water temperature DO 2015 - current

Abstract
The Northern Highlands Lake District (NHLD) is one of the few regions in the world with periodic comprehensive water chemistry data from hundreds of lakes spanning almost a century. Birge and Juday directed the first comprehensive assessment of water chemistry in the NHLD, sampling more than 600 lakes in the 1920s and 30s. These surveys have been repeated by various agencies and we now have data from the 1920s (UW), 1960s (WDNR), 1970s (EPA), 1980s (EPA), 1990s (EPA), and 2000s (NTL). The 28 lakes sampled as part of the Regional Lake Survey have been sampled by at least four of these regional surveys including the 1920s Birge and Juday sampling efforts. These 28 lakes were selected to represent a gradient of landscape position and shoreline development, both of which are important factors influencing social and ecological dynamics of lakes in the NHLD. This long-term regional dataset will lead to a greater understanding of whether and how large-scale drivers such as climate change and variability, lakeshore residential development, introductions of invasive species, or forest management have altered regional water chemistry.
Water temperature and dissolved oxygen profiles were taken on sampling days.
Contact
Dataset ID
382
Date Range
-
Maintenance
ongoing
Methods
water temperature and dissolved oxygen were measured at 1 meter intervals with a opto sonde
Version Number
1

Lake Mendota water temperature secchi depth snow depth ice thickness and meterological conditions 1894 - 2007

Abstract
Data for water temperature at different depth and different frequencies assembled from various sources by Dale Roberson. A table with additional parameters collected at the same time is also provided for dates when available. These parameters are weather observations, secchi depth, snow and ice depths.
Dataset ID
335
Date Range
-
Methods
Data were assembled from different collectors, names are given in metadata. Measurements were conducted by hand.
NTL Keyword
Version Number
14

CLA Yahara Lakes Citizen Offshore Water Quality Monitoring 2016 - 2017

Abstract
In 2013, Clean Lakes Alliance (CLA) launched a Citizen Water Quality Monitoring pilot. Objectives included evaluating and tracking nearshore water quality conditions on all five Yahara lakes: Lakes Mendota, Monona, Waubesa, Kegonsa and Wingra. In 2016, in order to fully understand the interaction between the offshore and nearshore
environment, CLA volunteers will begin sampling the deepest point (deep hole) of all Yahara lakes. The offshore monitoring program will focus on two components: water clarity sampling and dissolved oxygen and temperature measurement. Data from the offshore monitoring program will be compared to data from the nearshore program.
Contact
Creator
Dataset ID
330
Date Range
-
Methods
On Lakes Mendota, Monona, Waubesa, Kegonsa and Wingra, volunteers will use a Secchi disk to measure water clarity, and a digital handheld thermometer to measure air and surface water temperatures once per week on Thursday mornings . Secchi depth monitoring will take place at the deepest point of each lake. On Lakes Monona and Waubesa, concurrent with Secchi sampling, volunteers will use a YSI 550A multiprobe meter to measure dissolved oxygen and temperature at multiple depths. All volunteers are trained by Clean Lakes Alliance staff.
Version Number
2

LTREB Chemical and Physical Limnology at Lake Myvatn 2012-current

Abstract
These data are part of a long-term monitoring program at station 33 in the central part of Myvatn that represents the dominant habitat, with benthos consisting of diatomaceous ooze. The program was designed to characterize import benthis and pelagic variables across years as midge populations varied in abundance. Starting in 2012 samples were taken at roughly weekly inervals during June, July, and August, which corresponds to the summer generation of the dominant midge, Tanytarsus gracilentus.
Creator
Dataset ID
287
Date Range
-
Maintenance
Ongoing
Metadata Provider
Methods
Water Profile1. Take Light, DO, pH, Temp profile every 0.5mUse YSI DO probe, pH meter, and Li Cor light meter. Take the light profile from the sunny side of the boat.2. Take Secchi depthLower Secchi disk slowly until you can never see clear boundaries between white and black quarters, record this distance to the surface of the water as lower Secchi disk observation. Then pull the Secchi up until you can always see clear boundaries between white and black quarters, record this distance to the surface as the upper Secchi observation.Benthic Net Primary Production1. Measure light, temperature, percentDO, DO, and pH at 0.5m intervals at the sampling location.2. Take 10 clean/undisturbed cores. Try to get a uniform distance between the sediment and top of tube, so the cores have the same volume of water. Cover in boat with tarp to exclude light.3. Collect water from the shore of the boat and measure temp, percentDO, and DO. Save in bucket.4. Measure light intensity at 0 (out) and 0.5m depth where the cores will be incubated.5. Set up HOBO light recorder on the incubator.6. For each tube, take initial temp, percentDO, and DO. Before taking DO measurement, move the DO probe up and down three times to ensure no DO gradient (but do not disturb sediment). Add, slowly and without bubbling, 10 to 20mL of water (just the amount needed) to the core from bucket (number 3) to ensure no air space, and replace the stopper. Measure the distance from sediment to bottom of stopper to the nearest 0.5cm (column_depth).7. Place cores 1, 3, 5, and 7 in dark chambers (opaque tubes), so there are 4 dark and 6 light treatments.8. Incubate the cores using the metal structure at saturation light intensity if possible (300 mol per meter squared per second at 0.5m depth) for about 3h.9. Before taking DO measurement, move the DO probe up and down three times to ensure no DO gradient (but do not disturb sediment), and then measure percentDO, DO, and temperature in each core.Light controlsOnce a month (June, July, August), on a sunny day, incubate 10 cores for 3h with different light intensities to determine primary productivity under different light intensities and different temperatures. It would be best to do this the day after routine sampling (i.e., when retrieving the benthic sampler) so that the results can be compared to those from the routine sampling. Different light levels are obtained using white mesh bags around the core tubes.Core 1 and 6, lightCore 2 and 7, 2xCore 3 and 8, 4xCore 4 and 9, 8xCore 5 and 10, darkIMPORTANT: After the incubations, measure light intensity inside a core tube covered for the different treatments. This is done by removing the light meter from the metal holder and placing it facing up in a core using zip ties and a blue stopper at the bottom. Then place treatment bags over the top and measure light when holding the core at the level they reach in the incubator; use the marking on the light meter cord to make sure this is standardized for all measurements. This should be done 8 times total (each bag plus twice without bags).Light saturationOnce a month in the summer of 2013, we conducted sediment core incubations with varying amounts of shade cloth applied to the cores. Sediment cores received 0, 2, 4, 8, or 15 layers of shade cloth, with two cores in each treatment. All cores were then incubated in the lake over the same 3hr period at a depth of 0.5m.Sediment Dry Weight and Weight on Combustion1. Remove 0.75cm of sediment from a core into a plastic deli container. This should be done on a fresh core. This is the same sample that is used for chl analysis.2. Subsample 5 to 10mL sediment solution and place in a pre-weighed tin tray in oven at 60C for at least 12 hours. When dry, weigh for dry weight.In 2014, the method for sampling benthic chlorophyll changed. Sediment Dry Weight measurements were taken from these samples as well. Below is the pertinent section from the methods protocols. Processing after the collection of the sample was not changed.Take sediment samples from the 5 cores collected for sediment characteristics. Take 4 syringes of sediment with 10mL syringe (15.3 mm diameter). Take 4-5cm of sediment. Then, remove bottom 2cm and place top 2cm in the film canister.3. Combust at 550C for 4.5 hours. Weigh tray.4. If not analyzing combusted samples immediately, place in drying oven before weighing.
Version Number
15

Fluxes project at North Temperate Lakes LTER: Random lake survey 2004

Abstract
The overarching goal of this project is to understand carbon and nutrient cycles for a landscape on which terrestrial and freshwater systems are intimately connected in multiple and reciprocal ways. In the Northern Highlands region of Wisconsin, they are studying a spatially complex landscape in which water features make up almost half of the land area, with wetlands (27% of land surface) and lakes (13%) both prevalent throughout the region, interspersed in upland forests.Weather and limnological data from a set of 170 lakes in the NHLD samples summer 2004. The sampled lakes were from a random stratified subsample (N=300 of 7588 total) of all the lakes in the NHLD.
Contact
Core Areas
Dataset ID
277
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Hanson PC, Carpenter S, Cardille JA, Coe MT, Winslow LA. 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology. 52:814-22Lakes were selected from unique Water Body Identification Codes (WBICs). Linear features and water bodies identified as impoundments or stream openings were identified from maps digitised by the Departments of Natural Resources of Michigan and Wisconsin (1 : 24 000 USGS 7.5’ topographic quadrangles) and were excluded. More than 7500 lakes ranging in size from about 0.01 to over 2800 ha remained in the data set. We used a stratified random survey, an approach consistent with the Environmental Monitoring and Assessment Program (EMAP) guidelines (Larsen et al., 1994) of the U.S. Environmental Protection Agency, to select and sample 300 lakes from the data set as follows. All lakes were ordered by area and divided into 20 bins of equal population. From each bin, 15 lakes were chosen at random. Because of logistical issues in travelling to many lakes scattered over a wide geographical region, we clustered lakes into 31 geographically small regions of about 150 km2 each. The order of regions sampled was randomised to reduce correlation of geographic region with time. For any one sampling date we visited only one region, although not all lakes in a region could be visited on a single trip. After all 31 regions were visited, the regions were again selected at random, and lakes previously not visited were sampled. There were 45 sampling days spread between May 20 and August 19. Some lakes that were chosen for sampling could not be visited. Difficulty portaging the sampling gear to a lake or failure to gain access to a lake through private property were reasons for abandoning a sampling effort.Lakes were sampled at their approximate geographic centre. Lake depth and water clarity were measured with a Secchi disk. Our measurement of lake depth was neither a measurement of the maximum nor the mean depth. Because the measurement was made in the middle of the lake and most lakes in the region tend to be bowl shaped, our measurement was probably between mean and maximum depth. Dissolved oxygen (DO) and thermal profiles were obtained from a YSI Model 58 (YSI, Inc., Yellow Springs, OH, U.S.A.) metre (DO air calibrated; temperature calibrated in the laboratory), and the approximate middle of the epilimnion was estimated from the profile. Thermal stratification was calculated from the thermal profile according to the methods listed on the Internet at the North Temperate Lakes Long Term Ecological Research (NTL-LTER) program Web site (http://lter.limnology.wisc.edu). Water samples for later analyses (Table 1, chemical variables) were obtained from the middle of the epilimnion, using a peristaltic pump. For samples that required filtration [dissolved inorganic carbon (DIC), DOC, cations and anions], a 0.45 μm filter was attached in-line. All samples were refrigerated upon returning to the vehicle, and samples for total nitrogen (TN) and total phosphorus (TP) were preserved by acidification. Acid neutralizing capacity (ANC) and pH were determined the day of sampling by Gran alkalinity titration (for ANC) and measurement by pH probe (Accumet 950; Fisher Scientific, Hanover Park, IL U.S.A.). pH was not air equilibrated. DIC and DOC were measured with a carbon analyzer (TOC-V; Shimadzu Scientific Instruments, Columbia, MD, U.S.A.). TN and TP were measured with a segmented flow auto-analyzer (Astoria-Pacific, Inc., Clackamas, OR, U.S.A.). Anions were measured using an ion chromatograph (DX500; Dionex Corporation, Sunnyvale, CA, U.S.A.), and cations using mass spectrometry (ICP-MS; PerkinElmer Life and Analytical Sciences, Shelton, CT, U.S.A.). Details of chemical analyses are available on the Internet at the NTL-LTER Web site listed above.To correct for bias introduced by not sampling all 300 lakes, we replaced missing data using multiple imputation (Levy, 1999). Multiple imputation is a technique for estimating the uncertainty of imputed variables. For each variable for each lake not sampled in a given bin, we chose at random (with replacement) a value from lakes sampled in that bin. We repeated the imputation 1000 times to provide a distribution of estimates for each variable in the lakes not sampled. The distribution mean for each variable in each lake was used in the calculation of the median for the regional lake population. We chose to present the median for the 300 lakes because distributions tended to be highly skewed. For comparison purposes, we also calculated the median from sampled lakes only (i.e. excluding imputed data). The mean cumulative distributions for some variables, including 95% confidence intervals, were plotted from the 1000 cumulative distributions generated by multiple imputation.We fit a Pareto distribution to the regional lake area data set to compare the size distribution of NHLD lakes with those of other regions. We used the maximum likelihood estimator for parameter estimates (Bernardo & Smith, 2000). Of particular interest is the parameter (β) that describes the logarithmic decline in number of lakes with lake area, because this parameter has been used previously (Downing et al., 2006, Table 1) to compare lake area distributions among regions and to estimate the global abundance of lakes.Where indicated, results have been area weighted to reflect the influence of lake size. For correlations, data were transformed (log10) to normalise distributions and linearise relationships. Shoreline development factor (SDF), an index of the irregular shape of lakes, was calculated for each lake according to Kalff (2002). The minimum SDF, 1, indicates a lake is a perfect circle.
NTL Keyword
Version Number
25

Trout Lake USGS Water, Energy, and Biogeochemical Budgets (WEBB) Stream Data 1975-current

Abstract
This data was collected by the United States Geological Survey (USGS) for the Water, Energy, and Biogeochemical Budget Project. The data set is primarily composed of water chemistry variables, and was collected from four USGS stream gauge stations in the Northern Highland Lake District of Wisconsin, near Trout Lake. The four USGS stream gauge stations are Allequash Creek at County Highway M (USGS-05357215), Stevenson Creek at County Highway M (USGS-05357225), North Creek at Trout Lake (USGS-05357230), and the Trout River at Trout Lake (USGS-05357245), all near Boulder Junction, Wisconsin. The project has collected stream water chemistry data for a maximum of 36 different chemical parameters,. and three different physical stream parameters: temperature, discharge, and gauge height. All water chemistry samples are collected as grab samples and sent to the USGS National Water Quality Lab in Denver, Colorado. There is historic data for Stevenson Creek from 1975-1977, and then beginning again in 1991. The Trout Lake WEBB project began during the summer of 1991 and sampling of all four sites continues to date.
Creator
Dataset ID
276
Date Range
-
Maintenance
Completed.
Metadata Provider
Methods
DL is used to represent “detection limit” where known.NOTE (1): Each method listed below corresponds with a USGS Parameter Code, which is listed after the variable name. NOTE (2): If the NEMI method # is known, it is also specified at the end of each method description.NOTE (3): Some of the variables are calculated using algorithms within QWDATA. If this is the case see Appendix D of the NWIS User’s Manual for additional information. However, appendix D does not list the algorithm used by the USGS. If a variable is calculated with an algorithm the term: algor, will be listed after the variable name.anc: 99431, Alkalinity is determined in the field by using the gran function plot methods, see TWRI Book 9 Chapter A6.1. anc_1: 90410 and 00410, Alkalinity is determined by titrating the water sample with a standard solution of a strong acid. The end point of the titration is selected as pH 4.5. See USGS TWRI 5-A1/1989, p 57, NEMI method #: I-2030-89.2. c13_c12_ratio: 82081, Exact method unknown. The following method is suspected: Automated dual inlet isotope ratio analysis with sample preparation by precipitation with ammoniacal strontium chloride solution, filtration, purification, acidified of strontium carbonate; sample size is greater than 25 micromoles of carbon; one-sigma uncertainty is approximately ± 0.1 ‰. See USGS Determination of the delta13 C of Dissolved Inorganic Carbon in Water, RSIL Lab Code 1710. Chapter 18 of Section C, Stable Isotope-Ratio Methods Book 10, Methods of the Reston Stable Isotope Laboratory.3. ca, mg, mn, na, and sr all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:ca- 00915, mg- 00925, mn- 01056, na- 00930, sr- 01080All metals are determined simultaneously on a single sample by a direct reading emission spectrometric method using an inductively coupled argon plasma as an excitation source. Samples are pumped into a crossflow pneumatic nebulizer, and introduced into the plasma through a spray chamber and torch assembly. Each analysis is determined on the basis of the average of three replicate integrations, each of which is background corrected by a spectrum shifting technique except for lithium (670.7 nm) and sodium (589.0 nm). A series of five mixed-element standards and a blank are used for calibration. Method requires an autosampler and emission spectrometry system. See USGS OF 93-125, p 101, NEMI Method #: I-1472-87.DL’s: ca- .02 mg/l, mg-.01 mg/l, mn-1.0 ug/l, na- .2 mg/l, sr- .5 ug/l4. cl, f, and so4 all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:cl- 00940, f-00950, so4-00945All three anions (chloride, flouride, and sulfate) are separated chromatographically following a single sample injection on an ion exchange column. Ions are separated on the basis of their affinity for the exchange sites of the resin. The separated anions in their acid form are measured using an electrical conductivity cell. Anions are identified on the basis of their retention times compared with known standards. 19 The peak height or area is measured and compared with an analytical curve generated from known standards to quantify the results. See USGS OF 93-125, p 19, NEMI method #: I-2057.DL’s: cl-.2 mg/l, f-.1 mg/l, so4-.2 mg/lco2: 00405, algor, see NWIS User's Manual, QW System, Appendix D, Page 285.co3: 00445, algor.color: 00080, The color of the water is compared to that of the colored glass disks that have been calibrated to correspond to the platinum-cobalt scale of Hazen (1892), See USGS TWRI 5-A1 or1989, P.191, NEMI Method #: I-1250. DL: 1 Pt-Co colorconductance_field: 00094 and 00095, specific conductance is determined in the field using a standard YSI multimeter, See USGS TWRI 9, 6.3.3.A, P. 13, NEMI method #: NFM 6.3.3.A-SW.conductance_lab: 90095, specific conductance is determined by using a wheat and one bridge in which a variable resistance is adjusted so that it is equal to the resistance of the unknown solution between platinized electrodes of a standardized conductivity cell, sample at 25 degrees celcius, See USGS TWRI 5-A1/1989, p 461, NEMI method #: I-1780-85.dic: 00691, This test method can be used to make independent measurements of IC and TC and can also determine TOC as the difference of TC and IC. The basic steps of the procedure are as follows:(1) Removal of IC, if desired, by vacuum degassing;(2) Conversion of remaining inorganic carbon to CO<sub>2</sub> by action of acid in both channels and oxidation of total carbon to CO<sub>2</sub> by action of ultraviolet (UV) radiation in the TC channel. For further information, See ASTM Standards, NEMI method #: D6317. DL: n/adkn: 00623 and 99894, Organic nitrogen compounds are reduced to the ammonium ion by digestion with sulfuric acid in the presence of mercuric sulfate, which acts as a catalyst, and potassium sulfate. The ammonium ion produced by this digestion, as well as the ammonium ion originally present, is determined by reaction with sodium salicylate, sodium nitroprusside, and sodium hypochlorite in an alkaline medium. The resulting color is directly proportional to the concentration of ammonia present, see USGS TWRI 5-A1/1989, p 327, NEMI method #: 351.2. DL: .10 mg/Ldo: 0300, Dissolved oxygen is measured in the field with a standard YSI multimeter, NEMI Method #: NFM 6.2.1-Lum. DL: 1 mg/L.doc: 00681, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS OF 92-480, NEMI Method #: O-1122-92. DL: .10 mg/L.don: 00607, algor, see NWIS User's Manual, QW System, Appendix D, page 291.dp: 00666 and 99893, All forms of phosphorus, including organic phosphorus, are converted to orthophosphate ions using reagents and reaction parameters identical to those used in the block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and mercury (II) at a temperature of 370 deg, see USGS OF Report 92-146, or USGS TWRI 5-A1/1979, p 453, NEMI method #: I-2610-91. DL= .012 mg/L.fe: 01046, Iron is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame, see USGS TWRI 5-A1/1985, NEMI method #: I-1381. DL= 10µg/L.h_ion: 00191, algor.h20_hardness: 00900, algor.h20_hardness_2: 00902, algor.hco3: 00440, algor.k: 00935, Potassium is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame , see USGS TWRI 5-A1/1989, p 393, NEMI method #: I-1630-85. DL= .01 mg/L.n_mixed: 00600, algor.n_mixed_1: 00602, algor.n_mixed_2: 71887, algor.nh3_nh4: 00608, Ammonia reacts with salicylate and hypochlorite ions in the presence of ferricyanide ions to form the salicylic acid analog of indophenol blue (Reardon and others, 1966; Patton and Crouch, 1977; Harfmann and Crouch, 1989). The resulting color is directly proportional to the concentration of ammonia present, See USGS OF 93-125, p 125/1986 (mg/l as N), NEMI Method #: I-2525. DL= .01 mg/L.nh3_nh4_1: 71846, algor.nh3_nh4_2: 00610, same method as 00608, except see USGS TWRI 5-A1/1989, p 321. DL = .01 mg/L.nh3_nh4_3: 71845, algor.no2: 00613, Nitrite ion reacts with sulfanilamide under acidic conditions to form a diazo compound which then couples with N-1-naphthylethylenediamine dihydrochloride to form a red compound, the absorbance of which is measured colorimetrically, see USGS TWRI 5-A1/1989, p 343, NEMI method #: I-2540-90. DL= .01 mg/L.no2_2: 71856, algor.no3: 00618, Nitrate is determined sequentially with six other anions by ion-exchange chromatography, see USGS TWRI 5-A1/1989, P. 339, NEMI method #: I-2057. DL= .05 mg/L.no3_2: 71851, algor.no32: 00630, An acidified sodium chloride extraction procedure is used to extract nitrate and nitrite from samples of bottom material for this determination(Jackson, 1958). Nitrate is reduced to nitrite by cadmium metal. Imidazole is used to buffer the analytical stream. The sample stream then is treated with sulfanilamide to yield a diazo compound, which couples with N-lnaphthylethylenediamine dihydrochloride to form an azo dye, the absorbance of which is measured colorimetrically. Procedure is used to extract nitrate and nitrite from bottom material for this determination (Jackson, 1958), see USGS TWRI 5-A1/1989, p 351. DL= .1 mg/Lno32_2: 00631, same as description for no32, except see USGS OF 93-125, p 157. DL= .1 mg/L.o18_o16_ratio: 82085, Sample preparation by equilibration with carbon dioxide and automated analysis; sample size is 0.1 to 2.0 milliliters of water. For 2-mL samples, the 2-sigma uncertainties of oxygen isotopic measurement results are 0.2 ‰. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. Water is extracted from soils and plants by distillation with toluene; recommended sample size is 1-5 ml water per analysis, see USGS Determination of the Determination of the delta (18 O or 16O) of Water, RSIL Lab Code 489.o2sat: Dissolved oxygen is measured in the field with a standard YSI multimeter, which also measures % oxygen saturation, NEMI Method #: NFM 6.2.1-Lum.ph_field: 00400, pH determined in situ, using a standard YSI multimeter, see USGS Techniques of Water-Resources Investigations, book 9, Chaps. A1-A9, Chap. A6.4 "pH," NEMI method # NFM 6.4.3.A-SW. DL= .01 pH.ph_lab: 00403, involves use of laboratory pH meter, see USGS TWRI 5-A1/1989, p 363, NEMI method #: I-1586.po4: 00660, algor, see NWIS User's Manual, QW System, Appendix D, Page 286.po4_2: 00671, see USGS TWRI 5-A1/1989, NEMI method #: I-2602. DL= .01 mg/L.s: 63719, cannot determine exact method used. USGS method code: 7704-34-9 is typically used to measure sulfur as a percentage, with an DL =.01 µg/L. It is known that the units for sulfur measurements in this data set are micrograms per liter.sar: 00931, algor, see NWIS User's Manual, QW System, Appendix D, Page 288.si: 00955, Silica reacts with molybdate reagent in acid media to form a yellow silicomolybdate complex. This complex is reduced by ascorbic acid to form the molybdate blue color. The silicomolybdate complex may form either as an alpha or beta polymorph or as a mixture of both. Because the two polymorphic forms have absorbance maxima at different wavelengths, the pH of the mixture is kept below 2.5, a condition that favors formation of the beta polymorph (Govett, 1961; Mullen and Riley, 1955; Strickland, 1952), see USGS TWRI 5-A1/1989, p 417, NEMI method #: I-2700-85. DL= .10 mg/L.spc: 00932, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds: 70300 and 70301, A well-mixed sample is filtered through a standard glass fiber filter. The filtrate is evaporated and dried to constant weight at 180 deg C, see " Filterable Residue by Drying Oven," NEMI method #: 160.1, DL= 10 mg/l. Note: despite DL values occur in the data set that are less than 10 mg/l.tds_1: 70301, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds_2: 70303, algor, see NWIS User's Manual, QW System, Appendix D, Page 290.tkn: 00625 and 99892, Block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and Mercury (II) at a temperature of 370°C. See the USGS Open File Report 92-146 for further details. DL: .10 mg/L.toc: 00680, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS TWRI 5-A3/1987, p 15, NEMI Method #: O-1122-92. DL=.10 mg/L.ton: 00605, algor, See NWIS User's Manual, QW System, Appendix D, page 286.tp: 00665 and 99891, This method may be used to analyze most water, wastewater, brines, and water-suspended sediment containing from 0.01 to 1.0 mg/L of phosphorus. Samples containing greater concentrations need to be diluted, see USGS TWRI 5-A1/1989, p 367, NEMI method #: I-4607. tp_2: 71886, algor.tpc: 00694, The basic steps of this test method are:1) Conversion of remaining IC to CO2 by action of acid, 2) Removal of IC, if desired, by vacuum degassing, 3) Split of flow into two streams to provide for separate IC and TC measurements, 4) Oxidation of TC to CO2 by action of acid-persulfate aided by ultraviolet (UV) radiation in the TC channel, 5) Detection of CO2 by passing each liquid stream over membranes that allow the specific passage of CO2 to high-purity water where change in conductivity is measured, and 6) Conversion of the conductivity detector signal to a display of carbon concentration in parts per million (ppm = mg/L) or parts per billion (ppb = ug/L). The IC channel reading is subtracted from the TC channel reading to give a TOC reading, see ASTM Standards, NEMI Method #: D5997. DL= .06 µg/L.tpn: 49570, A weighed amount of dried particulate (from water) or sediment is combusted at a high temperature using an elemental analyzer. The combustion products are passed over a copper reduction tube to covert nitrogen oxides to molecular nitrogen. Carbon dioxide, nitrogen, and water vapor are mixed at a known volume, temperature, and pressure. The concentrations of nitrogen and carbon are determined using a series of thermal conductivity detectors/traps, measuring in turn by difference hydrogen (as water vapor), carbon (as carbon dioxide), and nitrogen (as molecular nitrogen). Procedures also are provided to differentiate between organic and inorganic carbon, if desired, see USEPA Method 440, NEMI method #: 440. DL= .01 mg/L.
Short Name
TL-USGS-WEBB Data
Version Number
15

North Temperate Lakes LTER: Physical Limnology of Lake Kegonsa and Lake Waubesa 1995 - current

Abstract
Parameters characterizing the physical limnology of Lakes Waubesa and Kegonsa are measured at one station in the deepest part of each lake at 0.5-m to 1-m depth intervals. Measured parameters in the data set include water temperature and dissolved oxygen, as well as the derived parameter percent oxygen saturation.Number of sites: 2Sampling Frequency: bi-weekly during ice-free season from late March or early April through early September, then every 4 weeks through late November; sampling is conducted usually once during the winter (depending on ice conditions).
Dataset ID
264
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
G. Reading Temperature and Dissolved Oxygen 1. Before leaving to sample a lake, check to make sure that there are no air bubbles under the probe membrane of the YSI TemperatureorDissolved Oxygen meter. If there are air bubbles or if it has been several months since changing the membrane (or if the instrument does not calibrate well or the oxygen readings wander), change the membrane as explained in the manual. Note: We have always used the Standard membranes. If adding water to new membrane fluid bottle (KCl), make sure to add Milli-Q water and not the CFL distilled water. 2. Be sure to always store the probe in 100percent humidity surrounded by a wet sponge or paper towel. 3. Turn on the temperatureordissolved oxygen meter at least 30 minutes before using it. It is best to turn it on before leaving to sample a lake as it uses up batteries slowly. 4. Calibrate the meter using the chart on the back of the instrument (adjusted to the Madison altitude - 97percent oxygen saturation). Leave the plastic cap on the probe (at 100percent humidity). The temperature should not be changing during the calibration. Zero the instrument. When the temperature equilibrates, adjust the oxygen to correspond to the chart. After calibrating the instrument, switch the knob to percent oxygen saturation to make sure it is close to 97percent. 5. Take readings at 1 meter intervals making sure to gently jiggle the cord when taking the oxygen readings (to avoid oxygen depletion). Jiggling the cord is not necessary if using a cable with a stirrer. Take half meter readings in the metalimnion (when temperature andoror oxygen readings exhibit a greater change with depth). A change of temperature greater than 1degreeC warrants half-meter intervals. 6. Record the bottom depth using the markings on the temp.oroxygen meter cord and take a temperature and dissolved oxygen reading with the probe lying on the lake bottom. Dont forget to jiggle the probe to remove any sediment. 7. If any readings seem suspicious, check them again when bringing the probe back up to the surface. You can also double check the calibration after bringing the probe out of the water (and putting the cap back on).
Short Name
KEWAPH01
Version Number
21

South: Field Sampling Routine

A. Nutrient Sampling: Refer to the Field Sheet to see which bottles need to be sampled at which depths and the 'Southern Lakes LTER Bottle Codes’ for preservation, filtering, and coding information.
 
1.     Purge the lines: Whenever sampling from a new depth, the peristaltic pump tubing must be purged of the water from the previous depth. After reaching the proper sampling depth, use a graduated cylinder to measure the volume of water purged before beginning the sampling. Purge at least 1200 mL of water for each 20 meters of tu

Lake Metabolism

Study sites
We sampled surface waters of 31 lakes in the Northern Highland Lake district of Wisconsin and the Upper Peninsula of Michigan during July and August of 2000 (Table 1). The lakes were chosen to span wide and orthogonal ranges in DOC and TP concentrations and for their close proximity to the Trout Lake Station in Vilas county, Wisconsin. The order in which the lakes were sampled was randomized.
Subscribe to water temperature