US Long-Term Ecological Research Network

WSC - Gridded sample points at Wibu field site including yield, soil texture, water table depth, and estimated soil water retention parameters

Abstract
A variety of data from gridded sampling points at the Wibu field site. The gridded sampling scheme is described in the Point Locations dataset. This dataset includes 2012 &amp; 2013 absolute and normalized yield, soil textural characteristics (organic content, porosity, bulk density, particle size metrics, % sand/silt/clay), a variety of water table depth metrics (mean, percentiles, sum exceedance values, moving averages), and soil water retention parameters estimated using the Rosetta pedotransfer function. It was collected as part of a study of the impacts of water table depth, soil texture, and growing season weather conditions on corn production at the Wibu field site, described in Zipper et al. (<em>in review</em>). The Wibu field site is a commercial agricultural field, which grew corn in the 2012, 2013, and 2014 growing seasons. See Zipper &amp; Loheide (2014) <em>Ag. For. Met. </em>for more information about the field site.
Dataset ID
312
Data Sources
Date Range
-
Maintenance
completed
Metadata Provider
Methods
A gridded set of points distributed at appr. 30 m resolution over the Wibu field site were established during the 2014 growing season. At each of these points, a disturbed soil sample from a depth of 5 cm was collected and used to measure the soil organic content. At a randomly selected subset of these points, an additional undisturbed soil core was collected from a depth of 5-7.5 cm and used to measure porosity, bulk density, and organic content (measured by burning for 24 hrs at 440&deg;C). Undisturbed soil cores were then split into 3 subsamples and a Beckman-Coulter LS-230 laser particle size analyzer was used to measure a continuous particle size distribution. The subsample with the median d50 particle size was used to calculate a variety of soil texture metrics, described in the data table below. These soil texture parameters were used as input to the Rosetta pedotransfer function (Schaap et al., 2001) to estimate soil water retention properties. At each of these points, the 2013 interpolated groundwater metrics and the yield data described in the Yield dataset were extracted using ArcMAP 10.2 software. A full description of this methodology is contained in Zipper et al. (in review).
Version Number
18
Subscribe to transpiration