US Long-Term Ecological Research Network

North Temperate Lakes LTER: Trout Lake Spiny Water Flea 2014 - present

Abstract
Beginning in 2014, 30 meter vertical tows with a special zooplankton net were collected in Trout Lake specifically for the invasive Bythotrephes longimanus (spiny water flea). The net has a 400 micrometer mesh with a 0.5 meter diameter opening. Individuals are simply counted, and density is determined to be the number of individuals divided by the total water volume of each tow.
Additional Information
Related data set: North Temperate Lakes LTER: Zooplankton - Trout Lake Area 1992 - current (37)
Core Areas
Dataset ID
389
Date Range
-
Methods
Two 30-meter vertical tows (0.5m diameter, 400um mesh net) are collected at the deepest part of Trout Lake each time the lake is visited for routine LTER sampling during open water. On occasion, tows are collected on additional dates. Samples are visually scanned in their entirety for number of Bythotrephes present. The samples are not preserved or archived.

Publication Date
Version Number
1

North Temperate Lakes LTER Regional Survey Zooplankton 2015 - current

Abstract
The Northern Highlands Lake District (NHLD) is one of the few regions in the world with periodic comprehensive water chemistry data from hundreds of lakes spanning almost a century. Birge and Juday directed the first comprehensive assessment of water chemistry in the NHLD, sampling more than 600 lakes in the 1920s and 30s. These surveys have been repeated by various agencies and we now have data from the 1920s (UW), 1960s (WDNR), 1970s (EPA), 1980s (EPA), 1990s (EPA), and 2000s (NTL). The 28 lakes sampled as part of the Regional Lake Survey have been sampled by at least four of these regional surveys including the 1920s Birge and Juday sampling efforts. These 28 lakes were selected to represent a gradient of landscape position and shoreline development, both of which are important factors influencing social and ecological dynamics of lakes in the NHLD. This long-term regional dataset will lead to a greater understanding of whether and how large-scale drivers such as climate change and variability, lakeshore residential development, introductions of invasive species, or forest management have altered regional water chemistry. Zooplankton samples were taken at approximately the deepest part of each lake, via a vertical tow with a Wisconsin net. Count of individuals and presence absence data for all lakes in the study region are provided here.
Contact
Core Areas
Dataset ID
381
Date Range
-
Maintenance
ongoing
Methods
One zooplankton sample was collected in June 2015 at the deepest part of each lake, via vertical tow with a Wisconsin net (20cm diameter, 80um mesh). Contents of the net were preserved in the field with cold 95% ethanol. Subsamples of each vertical tow sample were counted for zooplankton species, using enough volume to count at least 300 individuals. A larger volume was then visually scanned to look for presence of additional species not seen in the count volume, until at least 2000 individuals had been seen.

Version Number
1

Long-term fish size data for Wisconsin Lakes Department of Natural Resources and North Temperate Lakes LTER 1944 - 2012

Abstract
This dataset describes long-term (1944-2012) variations in individual fish total lengths from Wisconsin lakes. The dataset includes information on 1.9 million individual fish, representing 19 species. Data were collected by Wisconsin Department of Natural Resource fisheries biologists as part of routine lake fisheries assessments. Individual survey methodologies varied over space and time and are described in more detail by Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Contact
Core Areas
Creator
Dataset ID
357
Date Range
-
Maintenance
completed
Methods
Fisheries surveys of inland lakes and streams in Wisconsin have been conducted by the Wisconsin Department of Natural Resources (WDNR) professionals and its predecessor the Wisconsin Conservation Department for >70 y. Standard fyke net and boat electrofishing surveys tend to dominate the fisheries surveys and data collected. Most fyke net data on certain species (e.g., Walleye Sander vitreus and Muskellunge Esox masquinongy) originates from annual spring netting surveys following ice-out. These data are used for abundance estimates, mark and recapture surveys for estimating population sizes, and egg-take procedures for the hatcheries. Boat-mounted boom and mini-boom electrofishing surveys became increasingly common in the late 1950s and 1960s. Boat electrofishing surveys have typically been conducted during early summer months (May and June), but some electrofishing survey data are also collected in early spring as part of walleye and muskellunge mark-recapture surveys. Summer fyke netting surveys have been collected more sporadically over time, but were once more commonly used as a panfish survey methodology. Surveys were largely non-standardized. Thus, future users and statistical comparisons utilizing these data should acknowledge the non-standard nature of their collection. More in-depth description of these data can be found in Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Version Number
3

Long-term fish abundance data for Wisconsin Lakes Department of Natural Resources and North Temperate Lakes LTER 1944 - 2012

Abstract
This dataset describes long-term (1944-2012) variations in the relative abundance of fish populations representing nine species in Wisconsin lakes. Data were collected by Wisconsin Department of Natural Resource fisheries biologists as part of routine lake fisheries assessments. Individual survey methodologies varied over space and time and are described in more detail by Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Contact
Core Areas
Creator
Dataset ID
356
Date Range
-
Maintenance
completed
Methods
Fisheries surveys of inland lakes and streams in Wisconsin have been conducted by the Wisconsin Department of Natural Resources (WDNR) professionals and its predecessor the Wisconsin Conservation Department for >70 y. Standard fyke net and boat electrofishing surveys tend to dominate the fisheries surveys and data collected. Most fyke net data on certain species (e.g., Walleye Sander vitreus and Muskellunge Esox masquinongy) originates from annual spring netting surveys following ice-out. These data are used for abundance estimates, mark and recapture surveys for estimating population sizes, and egg-take procedures for the hatcheries. Boat-mounted boom and mini-boom electrofishing surveys became increasingly common in the late 1950s and 1960s. Boat electrofishing surveys have typically been conducted during early summer months (May and June), but some electrofishing survey data are also collected in early spring as part of walleye and muskellunge mark-recapture surveys. Summer fyke netting surveys have been collected more sporadically over time, but were once more commonly used as a panfish survey methodology. Surveys were largely non-standardized. Thus, future users and statistical comparisons utilizing these data should acknowledge the non-standard nature of their collection. More in-depth description of these data can be found in Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Version Number
5

Cascade Project at North Temperate Lakes LTER Core Data Zooplankton 1984 - 2016

Abstract
Zooplankton data from 1984-2016. Sampled approximately weekly with two net hauls through the water column (30 cm diameter net, 80 um mesh). There have been over eight zooplankton counters during this period, so species-level identifications (TAX, below) are not as consistent as those for some of the other datasets. Sampling Frequency: varies; Number of sites: 8
Core Areas
Dataset ID
355
Date Range
-
Maintenance
completed
Methods
Sampling:
Zooplankton were sampled approximately weekly with two net hauls through the water column (30 cm diameter net, 80 um mesh). Tows were taken at standard depths for almost all years. The standard depths are as follows: Peter, East Long, West Long, Crampton and Tuesday Lakes: 12m, Paul Lake: 8m, Ward Lake: 6m; exceptions are: for 2012 and beyond Tuesday Lake was sampled at 10m, Peter was sampled at 10m from 1984-1986, Paul was sampled at 7.5m in 1995. Samples were preserved with cold sugared formalin or Lugol's solution.
Version Number
16

Microbial Observatory at North Temperate Lakes LTER High-resolution temporal and spatial dynamics of microbial community structure in freshwater bog lakes 2005 - 2009 original format

Abstract
The North Temperate Lakes - Microbial Observatory seeks to study freshwater microbes over long time scales (10+ years). Observing microbial communities over multiple years using DNA sequencing allows in-depth assessment of diversity, variability, gene content, and seasonal/annual drivers of community composition. Combining information obtained from DNA sequencing with additional experiments, such as investigating the biochemical properties of specific compounds, gene expression, or nutrient concentrations, provides insight into the functions of microbial taxa. Our 16S rRNA gene amplicon datasets were collected from bog lakes in Vilas County, WI, and from Lake Mendota in Madison, WI. Ribosomal RNA gene amplicon sequencing of freshwater environmental DNA was performed on samples from Crystal Bog, North Sparkling Bog, West Sparkling Bog, Trout Bog, South Sparkling Bog, Hell’s Kitchen, and Mary Lake. These microbial time series are valuable both for microbial ecologists seeking to understand the properties of microbial communities and for ecologists seeking to better understand how microbes contribute to ecosystem functioning in freshwater.
Core Areas
Dataset ID
349
Date Range
-
Methods
Protocol available in methods section of: http://msphere.asm.org/content/2/3/e00169-17
Prior to collection, water temperature and dissolved oxygen concentrations are measured using a YSI 550a. The ranges of the epilimnion and hypolimnion are determined based on the location of the thermocline (where temperature/oxygen is changing the fastest). The two layers are collected separately in 1 meter increments using an integrated water column sampler. Water samples are taken back to the lab, shaken thoroughly, and filtered via peristaltic pump through 0.22 micron filters (Pall Supor). Filters are temporarily stored at -20C after collection and then transferred to -80C after transport on dry ice from Trout Lake Station to UW-Madison. Nutrient samples are collected bi-weekly following standard LTER protocols. DNA is extracted from filters using a FASTDNA SpinKit for Soil with minor modifications. (In cases of low yield or specialized sequencing methods, a phenol-chloroform extraction is used instead). The protocol for sequencing and analysis of data varies by year and by sub-project.
Version Number
4

Macrophyte Sampling - Yahara Lakes District

Macrophyte Sampling Schedule
1.       Macrophytes are sampled on Lakes Mendota, Monona, Waubesa, Wingra, and Fish Lake. Follow past years sampling order (Waubesa, Wingra, Fish, Monona, Mendota) and keep the dates as consistent to past years as possible (see list of dates). Working around the routine LTER sampling, schedule the macrophyte sampling well in advance in order to sign out a vehicle and boat when necessary.
 

Macrophyte Sampling Preparation
Subscribe to species