US Long-Term Ecological Research Network

Spatial variability in water chemistry of four Wisconsin aquatic ecosystems - High speed limnology Environmental Science and Technology datasets

Abstract
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. We developed a new sensor platform to continuously samples surface water at a range of speeds (0 to > 45 km hr-1) resulting in high-density, meso-scale spatial data. Here, we archive data associated with an Environmental Science and Technology publication. Data include a single spatial survey of the following aquatic ecosystems: Lake Mendota, Allequash Creek, Pool 8 of the Upper Mississippi River, and Trout Bog. Data have been provided in three formats (raw, hydraulic-corrected, and tau-corrected).
Dataset ID
337
Date Range
-
Maintenance
completed
Methods
The Fast Limnology Automated Measurement (FLAMe) platform is a novel flow-through system designed to sample inland waters at both low- (0 to appr. 10 km hr-1) and high-speeds (10 to greater than 45 km hr-1) described in Crawford et al. (2015). The FLAMe consists of three components: an intake manifold that attaches to the stern of a boat; a sensor and control box that contains hoses, valves, a circulation pump and sensor cradles; and a battery bank to power the electrical components. The boat-mounted intake manifold serves multiple purposes. First, sensors are mounted inside the boat, protecting them from potential damage. Second, the intake system creates a constant, bubble-free water flow, thus preventing any issues for optical sensors due to cavitation. Finally, to analyze dissolved gases, a constant water source is needed on board. Water flow via both the slow- and high-speed intakes is regulated by the onboard impeller pump, allowing for seamless switching between slow- and high-speed operations. Any number of sensors could be integrated into the platform with simple modifications, and can be combined with common limnological instruments such as acoustic depth-finders. In our example applications we used a YSI EXO2 multiparameter sonde (EXO2; Yellow Springs, OH, USA), and a Satlantic SUNA V2 optical nitrate (NO3) sensor (Halifax, NS, Canada), both integrated into the control box plumbing with flow-through cells available from the manufacturer. Additionally, a Los Gatos Research ultraportable greenhouse gas analyzer (UGGA) (cavity enhanced absorption spectrometer; Mountain View, CA, USA) was used to measure dry mole fraction of carbon dioxide (CO2) and methane (CH4) dissolved in surface water by equilibrating water with a small headspace using a sprayer-type equilibration system that has previously been shown to have fast response times relative to other designs16 (Figure S1). Both the EXO2 and the UGGA are capable of logging data at 1 Hz. Because the SUNA was operated out of the water and on a boat during warm periods, data were collected less frequently (appr. 0.1 Hz) to minimize lamp-on time and avoid the lamp temperature cutoff of 35° C. The EXO2 sonde uses a combination of electrical and optical sensors for: specific conductivity, water temperature, pH, dissolved oxygen, turbidity, fluorescent dissolved organic matter (fDOM), chlorophyll-a fluorescenece, and phycocyanin fluorescence. The SUNA instrument measures NO3 using in situ ultraviolet spectroscopy between 190-370 nm, has a detection range of 0.3-3000 microM NO3, and a precision of 2 microM NO3. The UGGA has a reported precision of 1 ppb (by volume). In order to translate time-series data from the instruments into spatial data, we also logged latitude and longitude at 1 Hz with a global positioning system (GPS) with the Wide Area Augmentation System (WAAS) functionality enabled allowing for less than 3 m accuracy for 95percent of measured coordinates. Synchronized time-stamps from the EXO2, UGGA, SUNA, and GPS were used to combine data streams into a single spatially-referenced dataset.
We ran a simple set of experiments to determine the residence time of the system and the overall response time of the EXO2 and UGGA sensors integrated into the platform. After determining first-order response characteristics of each sensor, we applied an ordinary differential equation method to correct the raw data for significant changes in water input resulting in higher accuracy spatial data (see Crawford et al. 2015).
Sensor response experiments
We conducted a series of sensor response experiments on Lake Mendota on August 1, 2014. The goal was to understand the potential lags and minimum response times for the EXO2 and UGGA sensors integrated into the FLAMe platform. These data were then used to develop correction procedures for higher accuracy spatial datasets. To test sensor responses to step-changes in water chemistry, we mixed a 40 L tracer solution into a plastic carboy that was connected to the reservoir port on the FLAMe. The reservoir was mixed with 50 mL of rhodamine WT to test the phytoplankton fluorescence sensors, 6 mL of quinine sulfate solution in acid buffer (100 QSE) to test the fDOM sensor, 14 g of KCl to test the conductivity sensor, and appr. 2 kg of ice to reduce the temperature of the solution relative to lake water. The mixture volume was increased to 40 L using tap water. We did not modify the CO2 concentration or pH in the carboy as we found the municipal water source to have greater than ambient lake CO2 (4300 vs. 290 microatm, respectively) and lower pH (7.5 vs 8.3, respectively). At the beginning of the experiments, we allowed lake water to circulate through the system for appr. 10 minutes. We then switched to the tracer solution for a period of five minutes, followed by five minutes of lake water, then back to the tracer solution for an additional five minutes.
Using the step-change experiment data, we determined each sensors hydraulic time constant (Hr) and parameter time constant (taus). The sensor-specific Hr is a function of system water residence time and sensor position/shielding within the system. Taus is the time required for a 63 percent response to a step-change input. Hr was calculated based on the plateau experiments and was indicated by the first observation with a non-zero rate of change. The CO2 and CH4 sensors had a much greater Hr than the EXO2 sensors because water must travel further through the system before equilibrating with the gas solution being pumped to the UGGA. Using these Hr values, we offset response variables thus removing the hydraulic lag. This correction does not account for sensor-specific response patterns (tau s). The EXO2 sensors have manufacturer-reported taus values between 2-5 s, but these values are not appropriate to apply to the FLAMe system because they do not include system hydraulic lag and mixing. In order to match sensor readings with spatial information, we first applied Hr values from each sensor output according to equation 2. This step aligns the time at which each sensor begins responding to the changing water, and accounts for the physical distance the water must travel before being sensed
In order to match individual sensor response characteristics and to obtain more accurate spatial data, we then applied sensor-specific corrections using Equation 3 (Fofonoff et al., 1974).
We first smoothed the raw data using a running mean of 3 observations in order to reduce inherent noise of the 1 Hz data. We then calculated dX/dt using a 3-point moving window around Xc. Equation 3 should ideally lead to a step response to a step-change input. We note that this is the same strategy used to correct oceanographic conductivity and temperature instruments (see Fozdar et al., 1985). Overall, the taus-corrected data show good responses to step-change inputs and indicate that this is a useful technique for generating higher accuracy spatial data. We include three types of data for each variable including: raw (e.g., TempC), the hydraulic lag corrected (e.g., TempC_hydro) and the taus-corrected data (e.g., TempC_tau). Note that not all sensors were used in each survey and not all sensors have each type of correction. This data was from our preliminary FLAMe sampling campaigns and future studies will include additional sensor outputs and corrections.
We used the FLAMe throughout the summer of 2014 on four distinct aquatic ecosystems including: a small dystrophic lake, a stream/lake complex, a medium-sized eutrophic lake, and a managed reach of the Upper Mississippi River. Each of these applications demonstrates the spatial variability of surface water chemistry and the flexibility of FLAMe for limnological research.
References
Crawford JT, Loken LC, Casson NJ, Smith C, Stone AG, and Winslow LA (2015) High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology. Environmental Science and Technology 49:442-450.
Fozdar FM, Parker GJ, and Imberger J (1985) Matching temperature and conductivity sensor response characteristics. Journal of Physical Oceanography 15:1557-1569.
Version Number
14

Creating multi-themed ecological regions for macroscale ecology: Testing a flexible, repeatable, and accessible clustering method

Abstract
This dataset was created for the following publication:
Cheruvelil, K.S., S. Yuan, K.E. Webster, P.-N. Tan, J.-F. Lapierre, S.M. Collins, C.E. Fergus, C.E. Scott, E.N. Henry, P.A. Soranno, C.T. Filstrup, T. Wagner. Under review. Creating multi-themed ecological regions for macrosystems ecology: Testing a flexible, repeatable, and accessible clustering method. Submitted to Ecology and Evolution July 2016.
This dataset includes lake total phosphorus (TP) and Secchi data from summer, epilimnetic water samples, as well as 52 geographic variables at the HU-12 scale; it is a subset of the larger LAGOS-NE database (Lake multi-scaled geospatial and temporal database, described in Soranno et al. 2015). LAGOS-NE compiles multiple, individual lake water chemistry datasets into an integrated database. We accessed LAGOSLIMNO version 1.054.1 for lake water chemistry data and LAGOSGEO version 1.03 for geographic data. In the LAGOSLIMNO database, lake water chemistry data were collected from individual state agency sampling and volunteer programs designed to monitor lake water quality. Water chemistry analyses follow standard lab methods. In the LAGOSGEO database geographic data were collected from national scale geographic information systems (GIS) data layers.

The dataset is a subset of the following integrated databases: LAGOSLIMNO v.1.054.1 and LAGOSGEO v.1.03. For full documentation of these databases, please see the publication below:
Soranno, P.A., E.G. Bissell, K.S. Cheruvelil, S.T. Christel, S.M. Collins, C.E. Fergus, C.T. Filstrup, J.F. Lapierre, N.R. Lottig, S.K. Oliver, C.E. Scott, N.J. Smith, S. Stopyak, S. Yuan, M.T. Bremigan, J.A. Downing, C. Gries, E.N. Henry, N.K. Skaff, E.H. Stanley, C.A. Stow, P.-N. Tan, T. Wagner, K.E. Webster. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science and data reuse. GigaScience 4:28 doi:10.1186/s13742-015-0067-4 .
Dataset ID
328
Date Range
-
Maintenance
completed
Methods
Limnological water chemistry samples were collected through individual monitoring programs carried out or overseen by state agencies. Water chemistry analyses were performed using standard methods by individual labs. Methods for integrating the disparate state datasets are described in detail in Soranno et al. 2015. The data for each lake were selected from the most recent 10 yr period available – 2002-2011. The data were first aggregated within a year by taking the median (as well as the mean) of the values if there were more than one sample per year. Then, the data were aggregated for each lake across years by taking the median (and mean) of the annual medians (or means). We calculated the number of years for which there are data, which is included in the dataset, as well as the standard deviation. The geographic data was calculated using the LAGOS GIS toolbox, https://soranno.github.io/LAGOS_GIS_Toolbox/ using GIS datasets available at the US national scale (see the above citation for further details on data sources).
Version Number
15

Saint Louis River Estuary Water Chemistry, Wisconsin, Minnesota, USA 2012 - 2013

Abstract
These data pertain to water and sediments collected from the Saint Louis River Estuary (SLRE) and its nearby water sources by Luke Loken and collaborators for his Masters thesis and additional publications. In brief, we sampled SLRE surface waters and sediments for a variety of physical, chemical, and biological attributes. Ten estuary stations were sampled approximately monthly from April 2012 through September 2013. On four of the sampling campaigns, water was collected from an additional 20 sites. Sites were selected to represent a gradient from the Saint Louis River to Lake Superior and included several tributaries that drain directly into the estuary. This design aimed to understand the spatial and temporal mixing pattern of the estuary as it receives water from several rivers, 2 waste water treatment plant, and Lake Superior. We sampled the estuary to assess the magnitude and timing of source water contributions to the estuary and establish a baseline of chemical and physical measurements to aid in future limnological research. Additionally, we performed nitrogen and carbon cycling rate experiments to determine the estuary-wide influence on nitrate, ammonium, and dissolved organic carbon. This included 8 sediment denitrification, 1 nitrification, and 2 breakdown dissolved organic carbon (BDOD) surveys. This work was funded by the Minnesota and Wisconsin Sea Grant and in coordination with the establishment of the Lake Superior National Estuary Research Reserve (LSNERR).
Contact
Dataset ID
322
Date Range
-
DOI
10.6073/pasta/08fdc0fb8528e37dd7ef6d6ad2b77f99
Maintenance
completed
Metadata Provider
Methods
We collected water samples from 10 estuary stations to represent a gradient from river to lake on 13 dates between April 2012 and September 2013. Stations 1-5 represented upper estuary sites, while stations 6-10 were lower. Stations were situated near the thalweg, but were shifted laterally to avoid traffic within the shipping channel. Sampling occurred approximately monthly during the open water season when sites were accessed by boat, and once during winter ice cover when a subset of sites were visited on foot. In addition to the core 10 stations, we sampled an additional 20 sites, four times over the two-year study during a high flow and baseflow period. These sites include 7 end members (Saint Louis River, Nemadji River, Bluff Creek, Kinsbury Creek, Pokegama River, and Lake Superior) and an additional 15 in-estuary sites (i.e., stations 16-30). Additional sites were occasionally visited and geographic locations to all stations are provided in SLRESitesTable.Physical LimnologyWe used a YSI EXO2 or 6-Series sonde (Yellow Springs, OH) to measure temperature, specific conductivity, dissolved oxygen, pH, turbidity, and algae fluorescence. Briefly, the sonde was lowered to appr. 0.5 m depth and allowed to stabilize. The sonde was calibrated in the lab that morning according to Lake Superior National Estuary Research Reserve (LSNERR) protocols.Light extinction was determined by lowering a photosynthetically active radiation (PAR) sensor (Licor model 192 or 193) attached to a light meter (Licor model 250A) through the water column. The sensor was allowed to stabilize at 0.25 m depth intervals. We linearly regressed the natural log of the measured light intensity against depth. The slope of this regression is the negative light extinction coefficient (k). Briefly k values closer to zero indicate clearer waters that transit more light.Water ChemistrySurface water from each station was collected into an HDPE carboy and processed in the lab within 10 h of collection. We processed samples in the lab (instead of on the boat) to expedite sample collection so that all stations could be visited within a single day (or within 2 days for spatial intensive surveys). Integrated water samples were taken from 0-2 m using a peristaltic pump or an integrated water sampler and stored in a cooler to maintain ambient temperature. Samples for dissolved solute analysis were filtered through a 0.45 microm Geotech capsule filter. All samples were refrigerated, frozen, or acidified (dependent on the analysis in question) within 12 h of collection. See meta data for SLREWaterChemTable for specifics regarding lab responsible for analyses.Samples for major cations (Calcium (Ca), Iron (Fe), Potassium (K), Sodium (Na), Magnesium (Mg), and Manganese (Mn)) were filtered upon collection into 60 mL acid-washed HDPE bottles, acidified to 1 percent ultrapure hydrochloric acid (HCl) and stored at room temperature until analysis (within 6 months). Cations were analyzed simultaneously on an optical inductively-coupled plasma emission on a Perkin-Elmer model 4300 DV ICP spectrophotometer according to methods outlined at the North Temperate Lakes- Long Term Ecological Research site.Samples for major anions (Chloride (Cl) and sulfate (SO4)) were filtered into a new 20 mL HDPE scintillation vials and stored at 4degree C until analysis (within 3 months). Anion samples were analyzed simultaneously by Ion Chromatography, using a hydroxide eluent determined by a Dionex model ICS 2100 using an electro-chemical suppressor.Samples for dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were analyzed on a Shimadzu TOC analyzer. DOC and DIC samples were filtered into acid-washed 24 mL glass vials and capped with septa, leaving no headspace. DOC samples were acidified with 100 microL of 2 M HCL upon collection. Both DOC and DIC were stored at 4 degreeC, and then analyzed within three weeks at the University of Minnesota-Twin Cities. Both DOC and DIC were collected in duplicate and reported as means.Samples for UV absorbance were filtered into ashed 40 mL glass amber vials and stored at 4degree C until analysis (within 2 months). We measured UV absorbance at 254 nm (Abs254) using a spectrophotometer (Cary 50 UV-Vis Spectrophotometer, Varian, Palo Alto, CA). Specific UV absorbance at 254 nm (SUVA254) was then calculated by dividing Abs254 by the DOC concentration of the water sample.Nitrate plus nitrite nitrogen (referred to as NO3-N), ammonium plus ammonia nitrogen (referred to as NH4-N), and soluble reactive phosphorus (SRP) were analyzed colormetrically. Samples were filtered into new 20 mL plastic scintillation vials and frozen within 8 h of collection. Samples were thawed within 4 months and were analyzed in parallel by automated colorimetric spectrophotometry, using an Astoria-Pacific Astoria II segmented flow autoanalyzer. NO3-N was determined using the automated cadmium reduction method with absorption monitored at lambda=520 nm. NH4-N was determined using the Berthelot Reaction, producing a blue colored indophenol compound, where the absorption was monitored at lambda=660 nm. SRP was determined by forming a phosphoantimonymoledbeun complex and was measured as lambda=880nm.Samples for total and dissolved nitrogen and phosphorus analysis were collected together and in-line filtered (dissolved nitrogen and phosphorus only) into 60 ml LDPE bottles and acidified to a 1 percent HCl. Once acidified, the samples were stored at room temperature until analysis, which occurred within one year. The samples were first prepared for analysis by adding a NaOH–Persulfate digestion reagent and heated for 1 h at 120 degreeC and 18-20 pounds per square inch (psi) in an autoclave. The samples were analyzed for total nitrogen and total phosphorus simultaneously by automated colorimetric spectrophotometry, using a segmented flow autoanalyzer. Total nitrogen is determined by utilizing the automated cadmium reduction method where the absorption is monitored at 520 nm; total phosphorus is determined using ascorbic acid-molybdate method where the absorption is monitored at 880 nm. Both are described in LTER standard methods.We determined dual isotopic natural abundance of nitrate (NO3) and water (H2O) from a subset of collected water samples. Samples for delta18O-NO3 and delta15N-NO3 were filtered into acid-washed 60 mL HDPE bottles and frozen within 8 h of collection. Nitrate isotope samples were analyzed using the denitrifier method at the Colorado Plateau Stable Isotope Laboratory. delta18O-NO3 and delta15N-NO3 isotopes were reported as the per mil (per-mille) deviation from Vienna Standard Mean Ocean Water (VSMOW) and air standards, respectively. Samples for isotopes of water (delta18O-H2O and delta2H-H2O) were collected without headspace in glass vials and measured using isotope ratio infrared spectroscopy at the University of Minnesota – Biometeorology lab. Six replicates were run per sample, and delta18O-H2O and delta2H-H2O were determined relative to VSMOW.Chlorophyll ALaboratory analysis of chlorophyll A (ChlA) uses the Turner Designs model 10-AU fluorometer, following improvements described in Welschmeyer (1994). In this method, ChlA in 90percent acetone is separated from other pigments by the use of specialized optical filters. ChlA samples were preserved within 24 h of water sampling, by collecting filtrand on a 0.2 microm cellulose nitrate filter, placing the filter in a 15 mL falcon tube, and freezing it. Between 200 and 1000 mL of sample was based through the filter until the filter was moderately stained and filtering speed slowed. Within three weeks of collection, filters were thawed, and 12.0 mL of acetone was added to tube, which was allowed to steep for 18-24 h in the dark at 4 degreeC. After steeping, samples were centrifuged at high speed in Sorvall GLC-2B centrifuge for 20 min and warmed to room temperature. Sample fluorescence was then measured on a calibrated Turner Designs model 10-AU fluorometer (excitation 436 nm, emission 680 nm). Sample fluorescence was then converted to a water column concentration by multiplying by the extract volume (i.e., 12 mL) and divided by the volume of water that passed through the filter (i.e., 200-1000 mL).ParticulatesSimilar to ChlA, particulate carbon, nitrogen, and phosphorus samples were collected by passing 200-1000 mL of water through a pre-combusted 0.7 glass fiber filter (GFF) and analyzing the filtrand. Filters were frozen immediately after filtration, and then dried at 60 degreeC for at least 48 hours. Particulate carbon and nitrogen was measured using a Thermo Fisher Flash 2000 elemental analyzer. Particulate phosphorus was determined from a separate filter. Filters were digested in 5 mL potassium persulfate and phosphorus was analyzed spectrophotometrically using the ascorbic acid-molybdate method (Menzel and Corwin 1965).NitrificationWater column nitrification rates were determined on 30 July 2013 for a subset of the water chemistry sampling stations (n = 15) that represented the full spatial extent and previously observed NH4-N range of the estuary. Water from each station was transferred to 333 mL polycarbonate bottles within 10 h of collection and spiked with 15NH4Cl to achieve a concentration of 0.03 micromol 15NH4 L-1. Samples were incubated at ambient temperature (20 degreeC ) in a dark cooler for 20 h. Pre- and post-incubation samples were filtered through 0.45 microm filters and analyzed for NO3-N, NH4-N and delta15N-NO3. Nitrification rates were determined based on changes in NO3-N, NH4-N, and delta15N-NO3 according to methods outlined in Small et al. (2013). Analysis for each station was performed in duplicate and reported as the mean.SedimentsSediments were collected on 8 of the water chemistry survey dates from stations 2-9 to determine spatial and temporal patterns of denitrification and sediment organic content. We also collected a single sediment sample from additional lower (n = 17) and upper (n = 6) stations on 19 June 2012 and 24 June 2013, respectively, to increase the spatial extent of our survey. In total, 56 and 42 individual sediment collections were made in 2012 and 2013, respectively. Sediments were collected from the upper 5-20 cm of the benthic zone using an Ekman dredge. At least 500 mL of benthic material was transferred to 1-L widemouth Nalgene containers and used in denitrification rate experiments. Fifteen mL of the uppermost sediment layer was transferred into sterile 100 mL disposable plastic screw-top containers to be analyzed for sediment composition content. Sediments were stored in a cooler while on the boat and transferred to 4 degreeC within 6 h.To assess the effects of sediment composition on denitrification, dry:wet ratios, bulk density, particle size distributions, loss-on-ignition (LOI), percent carbon, and percent nitrogen were determined from the 15 mL sediment subsamples. Sediments were weighed before and after drying at 60 degreeC for at least 48 h to determine dry:wet ratios and bulk density. Sediment particle size composition was determined optically using a Coulter LS-10 particle size analyzer and sizes were binned into percent clay (0-2.0 microm), silt (2.0-63.0 microm) and sand (63-2000 microm) (Scheldrick and Wang 1993). LOI was determined by the loss in mass of 2.0plus/-0.2 g dried homogenized sediment combusted at 550 degree Celsius for 4 h. Sediments were ground and analyzed for percent carbon and nitrogen using a Thermo Fisher Flash 2000 elemental analyzer.Sediment denitrificationWe determined actual (DeN) and potential (DEA) sediment denitrification rates in the laboratory using the acetylene block technique modified from Groffman et al. (1999) within 48 h of collection. We incubated 40±2 g of wet sediment saturated with 40±0.1 mL of estuary water in 125 mL glass Wheaton bottles at 20 degreeC. DEA incubations were spiked with glucose and NO3-N to a final concentration of 40 mg C L-1 and 100 mg N L-1, respectively; DeN incubations were given no amendments. All incubations were augmented with 10 mg L-1 chloramphenicol to inhibit microbial proliferation (Smith and Tiedje 1979). Samples were capped with rubber septa, flushed with helium (He) for 5 min to remove oxygen (O2), and injected with 10 mL acetylene. We allowed the acetylene 30 min to fully diffuse into the sediment slurry before taking the initial headspace sample (T0). Samples were placed on a shaker table in the dark for 2.6 h then sampled the final headspace (T1). The change in headspace N2O partial pressures (pN2Ofinal - pN2Oinitial) was used to determine the denitrification rate using the Bunsen correction and the ideal gas law. For both T0 and T1 samples, 10 mL of headspace was withdrawn from incubation bottles and injected into a He-flushed 12 mL gas-tight glass vials (Exetainers) sealed with rubber septa. We determined pN2O and pO2 in parallel on a gas chromatograph equipped with an electron capture detector (ECD) and thermal conductivity detector (TCD) using methods outlined in Spokas et al. (2005). Gas samples with O2 concentrations greater than 5percent were removed from analysis due to potential gas leakage. Denitrification rates were standardized to sediment dry mass. Samples collected on or before 6 June 2013 were incubated in triplicate; samples collected after were incubated in duplicate.Denitrification controls were further investigated by amending sediments with combinations of NO3-N and two types of organic carbon: glucose and natural organic matter (NOM; supplied by the International Humic Substance Society). On two dates in 2013, we incubated sediments from five of our core stations that spanned a gradient of sediment organic content with the following amendments: NO3-N only, NO3-N and glucose (DEA), NO3-N and NOM, glucose only, NOM only, and no amendments (DeN). The two carbon treatments were intended to test for possible effects of carbon quality, with NOM representing a recalcitrant, humic-rich carbon source similar to allochthonous materials in the SLRE to contrast the labile glucose treatment. Both carbon sources were amended to 40 mg C L-1, and NO3-N was amended to 100 mg N L-1. Sediments were incubated in parallel (see above).Breakdown Dissolved Organic Carbon (bDOC)Breakdown of DOC (bDOC) was determined from core stations (1-10) from water collected on 23 April and 30 July 2012. Briefly, 250 mL of estuary water was filtered through a 0.45 microM Geotech flow-through filter using a peristaltic pump into sealable glass jars. 25 mL of 2.0 microm filtered water from a common estuary source was added to the filtered jars. DOC samples were collected after 0, 1, 2, 4 ,8, 16, and 32 d and analyzed for DOC (see above). A linear model was fit between time since inoculation and DOC concentration to determine the breakdown of DOC from water column microbes.ReferencesMeyers PA, Teranes JL. 2001. Sediment organic matter. Pages 239-269, In: Track Enviornmental Change Using Lake Sediments Vol 2 Phys Geochemical Methods. Dordrecht: Kluwer Academic Publishers.Groffman, Peter M, Holland EA, Myrold DD, Robertson GP, Zou X. 1999. Denitirification. Pages 272-288 in Standand Soil Methods Long-Term Ecological Research, Oxford University, New York.Menzel DW, Corwin N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol and Oceanogr 10: 280–282.Scheldrick HB, Wang C. 1993. Particle size distribution. Pages 499-512 In: Soil Sampling and Methods of Analysis. Boca Raton: CRC Press LLC.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, McKay RML, Mukherjee M. 2013. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 58:276–86.Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261-267Spokas K, Wang D, Venterea R. 2005. Greenhouse gas production and emission from a forest nursery soil following fumigation with chloropicrin and methyl isothiocyanate. Soil Biol Biochem. 37:475–85.Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985-1992. 
Version Number
17

A Global database of methane concentrations and atmospheric fluxes for streams and rivers

Abstract
This dataset, referred to as MethDB, is a collation of publicly available values of methane (CH4) concentrations and atmospheric fluxes for world streams and rivers, along with supporting information on location, geographic, physical, and chemical conditions of the study sites. The data set is composed of four linked tables, corresponding to the data sources (Papers_MethDB), the study sites (Sites_MethDB), concentrations (Concentrations_MethDB), and influx/efflux rates (Fluxes_MethDB). Information was extracted from journal articles, government reports, book chapters, and similar sources that were acquired before 15 September 2015. Concentrations and fluxes were converted to a standard unit (micromoles per liter for concentration and millimoles per square meter per day for flux) and both the author-reported and converted data are included in the database. MethDB was assembled as part of a larger synthesis effort on stream and river CH4 dynamics, and assembled data were used to identify large-scale patterns and potential drivers of fluvial CH4 and to generate an updated global-scale estimate of CH4 emissions from world rivers.
Dataset ID
321
Date Range
-
DOI
10.6073/pasta/21f5bd6642e9689baf90262f3c85ac4a
Metadata Provider
Methods
CH4 data from streams and rivers are widely scattered, as values are often included as end-member in studies focused on other processes or types of ecosystems. Thus, while we sought to be as complete as possible in compiling existing data, some sources have undoubtedly been overlooked. Sources included journal articles, book chapters, dissertations, USGS open file reports, meeting proceedings, and unpublished results provided by individual investigators. Data incorporated into MethDB were strictly limited to surface waters of rivers and streams; values for groundwater, porewater, saturated soils, lakes, reservoirs, wetlands, estuaries, and floodplains were not included. Some papers were excluded because essential supporting information was missing (e.g., units), or extracting data from complex graphs was considered to be unwise. Data sources are listed in the Notes and Comments section below.
Version Number
5375866

Historical Plat Maps of Dane County Digitized and Converted to GIS (1962-2005)

Abstract
We constructed a time-series spatial dataset of parcel boundaries for the period 1962-2005, in roughly 4-year intervals, by digitizing historical plat maps for Dane County and combining them with the 2005 GIS digital parcel dataset. The resulting datasets enable the consistent tracking of subdivision and development for all parcels over a given time frame. The process involved 1) dissolving and merging the 2005 digital Dane County parcel dataset based on contiguity and name, 2) further merging 2005 parcels based on the hard copy 2005 Plat book, and then 3) the reverse chronological merging of parcels to reconstruct previous years, at 4-year intervals, based on historical plat books. Additional land use information such as 1) whether a structure was actually constructed (using the companion digitized aerial photo dataset), 2) cover crop, and 3) permeable surface area, can be added to these datasets at a later date.
Dataset ID
291
Date Range
-
Maintenance
Completed
Metadata Provider
Methods
Overview: Hard copy historical plat maps of Dane County in four year intervals from 1962to 2005 were digitized and converted to a GIS format using a process known as rectification, wherebycontrol points are set such that a point placed on the scanned image takes on the coordinates of thepoint chosen from the earliest GIS dataset, which for Dane County is from 2005. After a number ofcontrol points are set, the map is assigned the coordinates of the 2005 GIS dataset. In this way,the scanned plat map is now an image file with a distinct spatial location. Since the scanned platmaps do not have any attributes associated with the parcels, the third step is to assign attributesby working backwards from the 2005 GIS dataset. This process begins by making a copy of the 2005 GISdataset, then overlaying this new layer with the rectified scanned image. A subdivision choice isidentified where the parcel lines on the GIS layer are not in agreement with the scanned plat maps.The last step is to modify the copy of the 2005 GIS layer so that it matches the underlying plat map- in effect creating a historical GIS layer corresponding to the year of the plat map. When thelines that delineate a parcel appear in the GIS file but not the plat map, the multiple smallparcels in the 2005 GIS layer are merged together to represent the pre-subdivision parcel. Thisprocess is repeated for each historical year that plat maps are available. In the end, each timeperiod-1974 through 2000 in 4 year intervals-has a GIS file with all of the spatial attributes ofthe parcels.Land Atlas - Plat Books: The Land Atlas plat books were obtained for Dane County from theMadison Public Library, Stoughton Public Library and Robinson Map Library. With these materials onloan the pages were scanned at 150ppi in grayscale format; this process took place at the RobinsonMap Library. Once scanned, these images were georeferenced based on the 2000 digital parcel map.This process of rectification was done in Russell Labs using ESRI ArcMap 9.3. Control points such asroad intersections, were chosen to accurately georeference the 1997 scanned parcel map (1973 wasdone in this way as well). This process was done using a specific ArcGIS tool(View/Toolbars/Georeferencing). For the other years the scanned images were georeferenced based offthe four corners of the 1997 georeferenced scanned images. Georeferencing off the 1997 rectifiedimage allows for easier and quicker rectification but also facilitated detection of differencesbetween the scanned plats. The scanned image of the land ownership could be turned on and off foreasy comparison to the previous time set; these differences are the changes which were made on thedigital ownership map. We scanned and digitized the following years:Scanned plats: 1958, 1962, 1968, 1973, 1978, 1981, 1985, 1989, 1993, 1997, 2001, 2005Digitized plats: 1962, 1968, 1973, 1978, 1981, 1985, 1989, 1993, 1997, 2001, 2005Prepping the parcel Map: Digital parcel shapefiles for the years 2000 and 2005 wereprovided by the Dane County Land Information Office(http://www.countyofdane.com/lio/metadata/Parcels.htm) and were used as the starting reference.These datasets needed to be prepared for use. Many single parcels were represented by multiplecontiguous polygons. These were dissolved. (Multi-part, or non-contiguous polygons were notdissolved.) Here is the process to dissolve by NAME_CONT (contact name): Many polygons do not have acontact name. The majority of Madison and other towns do not have NAME_CONT, but most large parcelsdo. In order not to dissolve all of the parcels for which NAME_CONT is blank we did the following:Open the digital parcel shapefile and go to Selection/Select by Attributes. In this window choose thecorrect layer, chose method create new selection , scroll and double click NAME_CONT, then in thebottom both make sure it says [ "NAME_CONT" <>; ] (without brackets). This will select allpolygons which do not have an empty Name Contact attribute (empty value). From those polygonsselected they were aggregated based on the Name Contact field (parcels with the same NameContact were combined), where borders were contiguous. To do this the dissolve tool in DataManagement Tool/Generalization/Dissolve was used. Dissolve on field NAME_CONT and enter everyother field into the statistical fields menu. This was done without the multipart feature optionchecked, resulting in parcels only being combined when they share border. Keep these dissolvedpolygons highlighted. Once the dissolve process is complete use select by attributes tool again butthis time choose method of Add to Current Selection and say [ "NAME_CONT" = ]. This will provide adigital layer of polygons aggregated by name as well as nameless polygons to be manuallymanipulated.Parcel Map Manipulation: The goal from here was to, as accurately as possible, recreate adigital replica of the scanned parcel map, and aggregate up parcels with the same owner. This goalof replication is in regards to the linework as opposed to the owner name or any other informationin order to accurately capture the correct area as parcel size changed. This process of movingboundaries was independent of merging parcels. If individual scanned parcel boundaries are differentfrom the overlayed digital parcel shapefile, then the digital parcel linework must be changed. Asthis project utilizes both parcel shape and area, the parcels must be accurate. When mergingparcels, parcels with the same owner name, same owner connected on the plat map with an arrow, sameowner but separated by a road, or same owner and share a same point (two lots share a single pointat the corner) were merged to create a multi-part feature. Parcels with the same owner separated byanother parcel of a different owner with no points touching where not merged. This process ofreverse digitization was done using ArcMap. The already dissolved shapefile was copied to create onefile that was a historical record and one file to be edited to become the previous year (the nextyear back in time). With the digital parcel shapefile loaded, the rectified scanned plat maps werethen added. Once open, turn on the Editor Toolbar and Start Editing . The tools to use are thesketch tool and the merge tool. Quick keys where used (editor tool bar\customize) to speed thisprocess. To edit, zoom to a comfortable level (1:12,000) and slowly move across the townships in apattern which allows no areas to be missed (easiest to go township by township). When polygonsneeded to be reconstructed (the process of redrawing the parcel boundary linework), this was doneusing the sketch tool with either the create new polygon option or cut polygon option in theeditor toolbar. Using the sketch tool, with area highlighted, you can redraw the boundaries bycutting the polygons. Areas can be merged then recut to depict the underlying parcel map. If, forexample, a new development has gone in, many small parcels can be merged together to create a bigparcel, and then that large parcel can be broken into the parcels that were originally combined toform the subdivision. We can do this because the names in the attribute are not being preserved.This is a key note: THE OWNER NAME IS NOT A VARIABLE WE ARE CREATING, PRESERVING, OR OTHERWISEREPRESENTING. Once you merge the parcels, they will only maintain one of the names (and which nameis maintained is pretty much random). After the entire county is complete, go through again to checkthe new parcel shapefile, there will be mistakes. Snake through, going across the bottom one row ofsquares at a time. Examples of mistakes include primarily multi-part features that were exploded tochange one part, where the other parts would need to be re-merged. Another common correction arosebecause we typically worked on one township at a time, whereas ownership often crossed townships, soduring this second pass, we corrected cross-township ownership at the edges of the two scannedparcel maps. Finally, some roads which had been built into parcels (driveways) needed to be removedand these were not always caught during the first pass. Once the second run through is complete copythis shapefile so that it also has a back up.
Purpose
<p>Our purpose was to forecast detailed empirical distributions of the spatial pattern of land-use and ecosystem change and to test hypotheses about how economic variables affect land development in the Yahara watershed.</p>
Quality Assurance
<p>Accuracy was double check by visually comparing against corresponding plat book twice.</p>
Short Name
Historical Plat Maps of Dane County
Version Number
14

River Nutrient Uptake and Transport at North Temperate Lakes LTER (2005-2011)

Abstract
These data were collected by Stephen Michael Powers and collaborators for his Ph.d. research, documented in his dissertation: River Nutrient Uptake and Transport Across Extremes in Channel Form and Drainage Characteristics. A major goal of this research was to better understand how ecosystem form and landscape setting dictate aquatic biogeochemical functioning and elemental transport through rivers. To achieve this goal, major and minor ions were measured in both northern and southern Wisconsin streams located in a variety of land use settings. In total, 27 different streams were sampled at 104 different stations (multiple stations per system) from both groundwater and surface water sources. Organic and inorganic carbon and nitrogen pools were also measured in northern and southern Wisconsin streams. The streams that were sampled in northern Wisconsin flow through wetland ecosystems. In sampling such streams, the goal was to better understand how wetland ecosystems influence river nutrient deliveries. There is a large amount of stream chemistry data for Big Spring Creek, WI; where the influence of a small reservoir on solute transportation and transformation was studied in an agricultural watershed. All stream chemistry data is incorporated in a single data file, Water Chemistry 2005-2011. While the data is not included in the dissertation, a sediment core study was also done in the small reservoir and channel of Big Spring (BS) Creek, WI. The results of this study are featured in three data tables: BS Creek Sediment Core Analysis, BS Creek Sediment Core Chemistry, and BS Creek Longitudinal Profile. Finally, two data tables list the geospatial information of sampling sites for stream chemistry and sediment coring in Big Spring Creek. Documentation: Powers, S.M., 2012. River nutrient uptake and transport across extremes in channel form and drainage characteristics. ProQuest Dissertations and Theses. The University of Wisconsin - Madison, United States -- Wisconsin, p. 140.
Dataset ID
281
Date Range
-
Metadata Provider
Methods
I. Stream chemistry sample collection methods: core-sediment core was taken from the benthic zone of the streamgeopump-geopump used to pump stream water into collection bottlegrab-collection bottle filled with stream water by hand and filtered in the fieldgrabfilter- stream water collected by hand and filtered in field. Unfiltered and filtered samples placed in separate collection bottles.isco- sample collected by use of an ISCO automated samplerpoint- sampled collected by method outlined in patent US8337121sedimentgrab- sediment sample taken in field by hand and placed in collection bottlesyringe- sample collected from stream by syringe and placed in collection bottlesyringe_filter- sample collected from stream by syringe filter. Unfiltered and filtered samples placed in separate collection bottles. II. Stream chemistry analytical methods: All water samples were kept on ice and in the dark following collection, then were either acidified (TN/TP, TDN/TDP) or frozen until analysis (all other analytes).no32_2- This is NO<sub>3-</sub>N which is operationally defined as nitrate nitrogen + nitrite nitrogen. Determined by flow injection analysis on Astoria Pacific Instruments Autoanalyzer (APIA).nh4_n, tn1, tp1, tdn, tdp- All analytes measured by flow injection analysis on Astoria Pacific Instruments Autoanalyzer (APIA).srp- measured colorometrically using the molybdate blue method [APHA 1995] and a Beckman spectrophotometer.doc- measured using a Shimadzu carbon analyzer.doc_qual- the goal in doing this analysis is to determine the source of dissolved organic carbon (doc) measured in a particular riverine ecosystem. This was achieved by UV absorbance which provides an estimate of the aromaticity of the doc in a sample, and by extension, the potential source of the doc.cl, no2, no3, br, and so4- all measured by ion chromatography. See http://www.nemi.gov; method number 4110C. Detection limits for method number 4110C: cl-20&micro;g/l, no2-15&micro;g/l, no3-17&micro;g/l, br-75&micro;g/l, and so4-75&micro;g/l.ysi_cond, do, ph_field, wtemp- all measured by use of a standard YSI meter.tss- measured by standard methods. A thoroughly mixed sample is filtered and dried at 103-105 degreesCelcius. The obtained residue represents the amount of solids suspended in the sample solution. See http://www.nemi.giv; method number D5907.tot_om- measured by standard methods. The residue obtained from the tss procedure is ignited at 550 degreesCelcius and weighed, the difference in weight representing total volatile solids. Total volatile solids represents the portion of the residue that is composed of organic molecules. See http://www.nemi.gov; method number 160.4.turbid- measured by use of a nephelometer. III. Big Spring Sediment Coring Methods A. Field Methods- collecting sediment coresSediment core samples taken with WDNR piston core samplerB. Sediment Analysis- HydrometerDocumentation: Robertson, G.P., Coleman, D.C., Bledsoe, C.S. and Sollins, P., 1999. Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, 462 pp.Hydrometer Analysis- procedure used to determine percent clay:<p style="margin-left:.25in;">1. Dry the sample in a pre-weighed aluminum pan for at least 24 hr at 105 C. Make sure sample is completely dry before weighing.<p style="margin-left:.25in;">2. Weigh the dried sample, then ash for at least 8 hr at 550 C. Make sure to break up any large clumps before ashing.<p style="margin-left:.25in;">3. Weigh the ashed sample, then crush any aggregates with a pestal. Mix sample thoroughly.<p style="margin-left:.25in;">4. Transfer 40g, plus or minus one gram, of the sample into a 500mL wide mouth bottle<p style="margin-left:.25in;">5. Add 10g of sodium hexametaphosphate to the bottle.<p style="margin-left:.25in;">6. Add approx 200mL of deionized water to bottle. Shake vigorously with hand.<p style="margin-left:.25in;">7. Stir samples on shaker table for at least 8 hr at speed 40. Putting them in a box and fastening with bungee cords works best.<p style="margin-left:.25in;">8. Transfer sample to 1L cylinder, making sure to get all of sample out of bottle. Fill cylinder with deionized water up to the 1L mark.<p style="margin-left:.25in;">9. Prepare a blank cylinder by adding 10g of sodium hexametaphosphate and filling to 1L.<p style="margin-left:.25in;">10. Allow all cylinders to equilibrate to room temperature ( approx 30 min).<p style="margin-left:.25in;">11. Starting with the blank cylinder, put stopper into cylinder and shake end-over-end for approx 5 min. Rinse stopper. Repeat this step for all cylinders, rinsing stopper between cylinders.<p style="margin-left:.25in;">12. Record the time that you stopped shaking each cylinder.<p style="margin-left:.25in;">13. At 1.5 hr from time of shaking, record temperature and hydrometer level of the blank cylinder. Then record the 1.5 hr hydrometer level for each successive cylinder.<p style="margin-left:.25in;">14. At 24 hr from time of shaking, record temperature and hydrometer level of the blank cylinder. Then record the 24 hr hydrometer level for each successive cylinder. Sieve Analysis- procedure used to determine quantity of sand and silt<p style="margin-left:.25in;">1. After hydrometer analysis, pour the entire sample into the .063mm sieve. Rinse the sample thoroughly until all the clay is out. Try to break up any clay clumps you see.<p style="margin-left:.25in;">2. Transfer the sample to a pre-weighed and labeled aluminum pan. You will probably need to backwash the sieve to get the entire sample out. You can use a syringe to pull water from the pan if it gets too full. Dry the sample for 48 hours at 50-60C.<p style="margin-left:.25in;">3. Before transferring the dried sample to the sieves, make sure you pre-weigh the sieves and put their weight on the data sheet. You will need to do this before every sample as you might not get all the sample out of the sieves from the previous sample. Stack the sieves in the following order, top to bottom : 4mm, 2mm, 1mm, 0.5mm, 0.25mm, 0.125mm, 0.063mm, and pan. Pour the sample into the top sieve. Place the lid on, located on sieve shaker, and put the stack of sieves into the sieve shaker. Fasten the tie downs. Set shaker for 3 minutes. <p style="margin-left:.25in;">4. Remove stack of sieves from shaker. It&rsquo;s ok to leave the pan behind temporarily as it might be tight. Weigh each sieve and record the weight in the data sheet. If you see any clay clumps, break them up with your fingers and re-shake the stack a little, using hands is okay.<p style="margin-left:.25in;">5. Dump the sample out in the trash and clean the sieve with the brush. At the end of the day it might be necessary to backwash the sieves with water and dry overnight in the oven. <p style="margin-left:.25in;"> Calculations:1. percent clay was determined by the hydrometer analysis- P1.5, P24, X1.5, X24, and m are the variables that were calculated to determine percent clay by the hydrometer analysis.P1.5= ((sample hydrometer reading at 1.5 hours- blank hydrometer reading at 1.5 hours)/ (sample weight)) multiplied by 100.P24= ((sample hydrometer reading at 24 hours- blank hydrometer reading at 24 hours)/ (sample weight)) multiplied by 100X1.5= 1000*(.00019*(-.164* (sample hydrometer reading at 1.5 hours)+16.3)<sup>2</sup> *8100X24=1000*(.00019*(-.164* (sample hydrometer reading at 24 hours)+16.3)<sup>2</sup> *8100m= (P1.5-P24)/(ln(X1.5/X24))percent clay = m * ln(2/X24)) + P24clay (grams) = total weight * ( percent clay/ 100)2. percent Sand and percent Silt were determined based on the results of the sieve analysis which determined the grams of sand and silt.percent sand= total weight * (percent sand/ 100)percent silt= total weight * (percent silt/ 100)3. Othersorganic matter (grams) was calculated in this analysis as dry weight (grams) &ndash; ashed weight (grams)percwnt organic matter was calculated as ((organic matter (grams))/(total dry weight (grams)) multiplied by 100 C. Sediment Chemical Analysis1. SRP/ NaOH-PChemical analysis was done according to the protocol outlined in Pionke and Kunishi (1992). Each sample was first centrifuged and separated into aqueous and sediment fractions. The sediment fraction was then dried. The aqueous fraction was analyzed for soluble reactive phosphorus (srp) by automated colorimetry Nemi Method Number 365.4; see http://www.nemi.gov. NaOH P was then determined by NaOH extractions as described in Pionke and Kunishi (1992). Documentation: Pionke HB, Kunishi HM (1992) Phosphorus status and content of suspended sediment in a Pennsylvania watershed. Soil Sci 153:452&ndash;462.2. NH4 / KCl-NH4 The exact procedure that was used to analyze samples for ammonium is unknown. However, it is known that a KCl extraction was used. The KCl-NH4 was calculated as the concentration of ammonium in milliGramsPerLiter divided by the sediment weight in grams. 3. NO3 / KCl-NO3The exact procedure that was used to analyze samples for nitrate is also unknown. Again, it is known that a KCL extraction was used. The KCl-NO3 was calculated as the concentration of nitrate in milliGramsPerLiter divided by the sediment weight in grams.Note: The same sediment sample was used to measure ammonium and nitrate IV. Big Spring Creek Longitudinal Profile A standard longitudinal stream profile was conducted at Big Spring Creek, WI (wbic=176400) on unknown date(s). It is speculated that the profile was done during the summer of 2005, during which the rest of the data for Big Spring Creek was collected. Measurements for the profile began at the Big Spring Dam site (43.67035,-89.64225), a dam which was subsequently removed. The first (x_dist, y_dist) of (2.296, 5.57) corresponds to the location where the stream crosses Golden Court Road, whereas the second coordinate pair of (-2.615, -36.303) corresponds to the point below the previous Big Spring Creek Dam site. The third (x_dist, y_dist) of (-9.472, 7.681) corresponds to the top of the dam gates and is assigned a distance=0 as it is the starting point.
Version Number
23

Trout Lake USGS Water, Energy, and Biogeochemical Budgets (WEBB) Stream Data 1975-current

Abstract
This data was collected by the United States Geological Survey (USGS) for the Water, Energy, and Biogeochemical Budget Project. The data set is primarily composed of water chemistry variables, and was collected from four USGS stream gauge stations in the Northern Highland Lake District of Wisconsin, near Trout Lake. The four USGS stream gauge stations are Allequash Creek at County Highway M (USGS-05357215), Stevenson Creek at County Highway M (USGS-05357225), North Creek at Trout Lake (USGS-05357230), and the Trout River at Trout Lake (USGS-05357245), all near Boulder Junction, Wisconsin. The project has collected stream water chemistry data for a maximum of 36 different chemical parameters,. and three different physical stream parameters: temperature, discharge, and gauge height. All water chemistry samples are collected as grab samples and sent to the USGS National Water Quality Lab in Denver, Colorado. There is historic data for Stevenson Creek from 1975-1977, and then beginning again in 1991. The Trout Lake WEBB project began during the summer of 1991 and sampling of all four sites continues to date.
Creator
Dataset ID
276
Date Range
-
Maintenance
Completed.
Metadata Provider
Methods
DL is used to represent “detection limit” where known.NOTE (1): Each method listed below corresponds with a USGS Parameter Code, which is listed after the variable name. NOTE (2): If the NEMI method # is known, it is also specified at the end of each method description.NOTE (3): Some of the variables are calculated using algorithms within QWDATA. If this is the case see Appendix D of the NWIS User’s Manual for additional information. However, appendix D does not list the algorithm used by the USGS. If a variable is calculated with an algorithm the term: algor, will be listed after the variable name.anc: 99431, Alkalinity is determined in the field by using the gran function plot methods, see TWRI Book 9 Chapter A6.1. anc_1: 90410 and 00410, Alkalinity is determined by titrating the water sample with a standard solution of a strong acid. The end point of the titration is selected as pH 4.5. See USGS TWRI 5-A1/1989, p 57, NEMI method #: I-2030-89.2. c13_c12_ratio: 82081, Exact method unknown. The following method is suspected: Automated dual inlet isotope ratio analysis with sample preparation by precipitation with ammoniacal strontium chloride solution, filtration, purification, acidified of strontium carbonate; sample size is greater than 25 micromoles of carbon; one-sigma uncertainty is approximately ± 0.1 ‰. See USGS Determination of the delta13 C of Dissolved Inorganic Carbon in Water, RSIL Lab Code 1710. Chapter 18 of Section C, Stable Isotope-Ratio Methods Book 10, Methods of the Reston Stable Isotope Laboratory.3. ca, mg, mn, na, and sr all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:ca- 00915, mg- 00925, mn- 01056, na- 00930, sr- 01080All metals are determined simultaneously on a single sample by a direct reading emission spectrometric method using an inductively coupled argon plasma as an excitation source. Samples are pumped into a crossflow pneumatic nebulizer, and introduced into the plasma through a spray chamber and torch assembly. Each analysis is determined on the basis of the average of three replicate integrations, each of which is background corrected by a spectrum shifting technique except for lithium (670.7 nm) and sodium (589.0 nm). A series of five mixed-element standards and a blank are used for calibration. Method requires an autosampler and emission spectrometry system. See USGS OF 93-125, p 101, NEMI Method #: I-1472-87.DL’s: ca- .02 mg/l, mg-.01 mg/l, mn-1.0 ug/l, na- .2 mg/l, sr- .5 ug/l4. cl, f, and so4 all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:cl- 00940, f-00950, so4-00945All three anions (chloride, flouride, and sulfate) are separated chromatographically following a single sample injection on an ion exchange column. Ions are separated on the basis of their affinity for the exchange sites of the resin. The separated anions in their acid form are measured using an electrical conductivity cell. Anions are identified on the basis of their retention times compared with known standards. 19 The peak height or area is measured and compared with an analytical curve generated from known standards to quantify the results. See USGS OF 93-125, p 19, NEMI method #: I-2057.DL’s: cl-.2 mg/l, f-.1 mg/l, so4-.2 mg/lco2: 00405, algor, see NWIS User's Manual, QW System, Appendix D, Page 285.co3: 00445, algor.color: 00080, The color of the water is compared to that of the colored glass disks that have been calibrated to correspond to the platinum-cobalt scale of Hazen (1892), See USGS TWRI 5-A1 or1989, P.191, NEMI Method #: I-1250. DL: 1 Pt-Co colorconductance_field: 00094 and 00095, specific conductance is determined in the field using a standard YSI multimeter, See USGS TWRI 9, 6.3.3.A, P. 13, NEMI method #: NFM 6.3.3.A-SW.conductance_lab: 90095, specific conductance is determined by using a wheat and one bridge in which a variable resistance is adjusted so that it is equal to the resistance of the unknown solution between platinized electrodes of a standardized conductivity cell, sample at 25 degrees celcius, See USGS TWRI 5-A1/1989, p 461, NEMI method #: I-1780-85.dic: 00691, This test method can be used to make independent measurements of IC and TC and can also determine TOC as the difference of TC and IC. The basic steps of the procedure are as follows:(1) Removal of IC, if desired, by vacuum degassing;(2) Conversion of remaining inorganic carbon to CO<sub>2</sub> by action of acid in both channels and oxidation of total carbon to CO<sub>2</sub> by action of ultraviolet (UV) radiation in the TC channel. For further information, See ASTM Standards, NEMI method #: D6317. DL: n/adkn: 00623 and 99894, Organic nitrogen compounds are reduced to the ammonium ion by digestion with sulfuric acid in the presence of mercuric sulfate, which acts as a catalyst, and potassium sulfate. The ammonium ion produced by this digestion, as well as the ammonium ion originally present, is determined by reaction with sodium salicylate, sodium nitroprusside, and sodium hypochlorite in an alkaline medium. The resulting color is directly proportional to the concentration of ammonia present, see USGS TWRI 5-A1/1989, p 327, NEMI method #: 351.2. DL: .10 mg/Ldo: 0300, Dissolved oxygen is measured in the field with a standard YSI multimeter, NEMI Method #: NFM 6.2.1-Lum. DL: 1 mg/L.doc: 00681, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS OF 92-480, NEMI Method #: O-1122-92. DL: .10 mg/L.don: 00607, algor, see NWIS User's Manual, QW System, Appendix D, page 291.dp: 00666 and 99893, All forms of phosphorus, including organic phosphorus, are converted to orthophosphate ions using reagents and reaction parameters identical to those used in the block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and mercury (II) at a temperature of 370 deg, see USGS OF Report 92-146, or USGS TWRI 5-A1/1979, p 453, NEMI method #: I-2610-91. DL= .012 mg/L.fe: 01046, Iron is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame, see USGS TWRI 5-A1/1985, NEMI method #: I-1381. DL= 10µg/L.h_ion: 00191, algor.h20_hardness: 00900, algor.h20_hardness_2: 00902, algor.hco3: 00440, algor.k: 00935, Potassium is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame , see USGS TWRI 5-A1/1989, p 393, NEMI method #: I-1630-85. DL= .01 mg/L.n_mixed: 00600, algor.n_mixed_1: 00602, algor.n_mixed_2: 71887, algor.nh3_nh4: 00608, Ammonia reacts with salicylate and hypochlorite ions in the presence of ferricyanide ions to form the salicylic acid analog of indophenol blue (Reardon and others, 1966; Patton and Crouch, 1977; Harfmann and Crouch, 1989). The resulting color is directly proportional to the concentration of ammonia present, See USGS OF 93-125, p 125/1986 (mg/l as N), NEMI Method #: I-2525. DL= .01 mg/L.nh3_nh4_1: 71846, algor.nh3_nh4_2: 00610, same method as 00608, except see USGS TWRI 5-A1/1989, p 321. DL = .01 mg/L.nh3_nh4_3: 71845, algor.no2: 00613, Nitrite ion reacts with sulfanilamide under acidic conditions to form a diazo compound which then couples with N-1-naphthylethylenediamine dihydrochloride to form a red compound, the absorbance of which is measured colorimetrically, see USGS TWRI 5-A1/1989, p 343, NEMI method #: I-2540-90. DL= .01 mg/L.no2_2: 71856, algor.no3: 00618, Nitrate is determined sequentially with six other anions by ion-exchange chromatography, see USGS TWRI 5-A1/1989, P. 339, NEMI method #: I-2057. DL= .05 mg/L.no3_2: 71851, algor.no32: 00630, An acidified sodium chloride extraction procedure is used to extract nitrate and nitrite from samples of bottom material for this determination(Jackson, 1958). Nitrate is reduced to nitrite by cadmium metal. Imidazole is used to buffer the analytical stream. The sample stream then is treated with sulfanilamide to yield a diazo compound, which couples with N-lnaphthylethylenediamine dihydrochloride to form an azo dye, the absorbance of which is measured colorimetrically. Procedure is used to extract nitrate and nitrite from bottom material for this determination (Jackson, 1958), see USGS TWRI 5-A1/1989, p 351. DL= .1 mg/Lno32_2: 00631, same as description for no32, except see USGS OF 93-125, p 157. DL= .1 mg/L.o18_o16_ratio: 82085, Sample preparation by equilibration with carbon dioxide and automated analysis; sample size is 0.1 to 2.0 milliliters of water. For 2-mL samples, the 2-sigma uncertainties of oxygen isotopic measurement results are 0.2 ‰. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. Water is extracted from soils and plants by distillation with toluene; recommended sample size is 1-5 ml water per analysis, see USGS Determination of the Determination of the delta (18 O or 16O) of Water, RSIL Lab Code 489.o2sat: Dissolved oxygen is measured in the field with a standard YSI multimeter, which also measures % oxygen saturation, NEMI Method #: NFM 6.2.1-Lum.ph_field: 00400, pH determined in situ, using a standard YSI multimeter, see USGS Techniques of Water-Resources Investigations, book 9, Chaps. A1-A9, Chap. A6.4 "pH," NEMI method # NFM 6.4.3.A-SW. DL= .01 pH.ph_lab: 00403, involves use of laboratory pH meter, see USGS TWRI 5-A1/1989, p 363, NEMI method #: I-1586.po4: 00660, algor, see NWIS User's Manual, QW System, Appendix D, Page 286.po4_2: 00671, see USGS TWRI 5-A1/1989, NEMI method #: I-2602. DL= .01 mg/L.s: 63719, cannot determine exact method used. USGS method code: 7704-34-9 is typically used to measure sulfur as a percentage, with an DL =.01 µg/L. It is known that the units for sulfur measurements in this data set are micrograms per liter.sar: 00931, algor, see NWIS User's Manual, QW System, Appendix D, Page 288.si: 00955, Silica reacts with molybdate reagent in acid media to form a yellow silicomolybdate complex. This complex is reduced by ascorbic acid to form the molybdate blue color. The silicomolybdate complex may form either as an alpha or beta polymorph or as a mixture of both. Because the two polymorphic forms have absorbance maxima at different wavelengths, the pH of the mixture is kept below 2.5, a condition that favors formation of the beta polymorph (Govett, 1961; Mullen and Riley, 1955; Strickland, 1952), see USGS TWRI 5-A1/1989, p 417, NEMI method #: I-2700-85. DL= .10 mg/L.spc: 00932, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds: 70300 and 70301, A well-mixed sample is filtered through a standard glass fiber filter. The filtrate is evaporated and dried to constant weight at 180 deg C, see " Filterable Residue by Drying Oven," NEMI method #: 160.1, DL= 10 mg/l. Note: despite DL values occur in the data set that are less than 10 mg/l.tds_1: 70301, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds_2: 70303, algor, see NWIS User's Manual, QW System, Appendix D, Page 290.tkn: 00625 and 99892, Block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and Mercury (II) at a temperature of 370°C. See the USGS Open File Report 92-146 for further details. DL: .10 mg/L.toc: 00680, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS TWRI 5-A3/1987, p 15, NEMI Method #: O-1122-92. DL=.10 mg/L.ton: 00605, algor, See NWIS User's Manual, QW System, Appendix D, page 286.tp: 00665 and 99891, This method may be used to analyze most water, wastewater, brines, and water-suspended sediment containing from 0.01 to 1.0 mg/L of phosphorus. Samples containing greater concentrations need to be diluted, see USGS TWRI 5-A1/1989, p 367, NEMI method #: I-4607. tp_2: 71886, algor.tpc: 00694, The basic steps of this test method are:1) Conversion of remaining IC to CO2 by action of acid, 2) Removal of IC, if desired, by vacuum degassing, 3) Split of flow into two streams to provide for separate IC and TC measurements, 4) Oxidation of TC to CO2 by action of acid-persulfate aided by ultraviolet (UV) radiation in the TC channel, 5) Detection of CO2 by passing each liquid stream over membranes that allow the specific passage of CO2 to high-purity water where change in conductivity is measured, and 6) Conversion of the conductivity detector signal to a display of carbon concentration in parts per million (ppm = mg/L) or parts per billion (ppb = ug/L). The IC channel reading is subtracted from the TC channel reading to give a TOC reading, see ASTM Standards, NEMI Method #: D5997. DL= .06 µg/L.tpn: 49570, A weighed amount of dried particulate (from water) or sediment is combusted at a high temperature using an elemental analyzer. The combustion products are passed over a copper reduction tube to covert nitrogen oxides to molecular nitrogen. Carbon dioxide, nitrogen, and water vapor are mixed at a known volume, temperature, and pressure. The concentrations of nitrogen and carbon are determined using a series of thermal conductivity detectors/traps, measuring in turn by difference hydrogen (as water vapor), carbon (as carbon dioxide), and nitrogen (as molecular nitrogen). Procedures also are provided to differentiate between organic and inorganic carbon, if desired, see USEPA Method 440, NEMI method #: 440. DL= .01 mg/L.
Short Name
TL-USGS-WEBB Data
Version Number
15
Subscribe to rivers