Snow Manipulation Greenhouse Gas Measurements at South Sparkling and Trout Bog
2020-2021
Abstract
To investigate the effect of a winter with decreased snow cover on greenhouse gas
emissions, we experimentally removed snowfall from a small dystrophic lake in
northern Wisconsin. As a comparative study, we were able to explore the role of
light in under-ice gas dynamics and spring emissions in dimictic lakes. This dataset
contains greenhouse gas and temperature/dissolved oxygen profile data collected on
South Sparkling and Trout Bog during the winter of 2020 through the winter of 2021.
Data were collected between 09 January 2020 and 13 April 2021 in the deep hole of
both bogs. Dissolved greenhouse gas concentrations of carbon dioxide and methane
were measured using the headspace equilibrium method.<br/>
emissions, we experimentally removed snowfall from a small dystrophic lake in
northern Wisconsin. As a comparative study, we were able to explore the role of
light in under-ice gas dynamics and spring emissions in dimictic lakes. This dataset
contains greenhouse gas and temperature/dissolved oxygen profile data collected on
South Sparkling and Trout Bog during the winter of 2020 through the winter of 2021.
Data were collected between 09 January 2020 and 13 April 2021 in the deep hole of
both bogs. Dissolved greenhouse gas concentrations of carbon dioxide and methane
were measured using the headspace equilibrium method.<br/>
Dataset ID
405
Data Sources
Date Range
-
LTER Keywords
Methods
Dissolved gas samples were collected at 0.5, 3, 5 and 7 m using the
headspace method. From January to March 2020, water at each discrete depth
was pumped directly into the bottom of a 1-L Nalgene bottle and flushed with
at least three times the volume before being capped with a rubber stopper.
60 mL of ambient air was added while 60 mL of sample water was removed from
the bottle and equilibrated by shaking for 90 seconds. From May 2020
onwards, water was pumped into a closed bottle system, and using syringe,
105mL of water was extracted and 35mL of ambient air was added. The
headspace was then equilibrated for 2 minutes by shaking and 10 mL of
equilibrated gas sample was then removed from the bottle and injected into a
5.9 mL Labco Exetainer vial that had been previously vacuumed. While in the
field, samples were stored in pouches within a survival suit to prevent
extreme temperature change. We analyzed the gas samples for CO2 and CH4 with
a gas chromatograph (GC-2014; Shimadzu Scientific Instruments) equipped with
a methanizer and flame ionization detector. Greenhouse gas concentrations
were calculated according to Henry’s law and corrected by measured ambient
air.<br/>
headspace method. From January to March 2020, water at each discrete depth
was pumped directly into the bottom of a 1-L Nalgene bottle and flushed with
at least three times the volume before being capped with a rubber stopper.
60 mL of ambient air was added while 60 mL of sample water was removed from
the bottle and equilibrated by shaking for 90 seconds. From May 2020
onwards, water was pumped into a closed bottle system, and using syringe,
105mL of water was extracted and 35mL of ambient air was added. The
headspace was then equilibrated for 2 minutes by shaking and 10 mL of
equilibrated gas sample was then removed from the bottle and injected into a
5.9 mL Labco Exetainer vial that had been previously vacuumed. While in the
field, samples were stored in pouches within a survival suit to prevent
extreme temperature change. We analyzed the gas samples for CO2 and CH4 with
a gas chromatograph (GC-2014; Shimadzu Scientific Instruments) equipped with
a methanizer and flame ionization detector. Greenhouse gas concentrations
were calculated according to Henry’s law and corrected by measured ambient
air.<br/>
Version Number
1