Greenhouse gas emissions from streams at North Temperate Lakes LTER 2012
Abstract
Aquatic ecosystems can be important components of landscape carbon budgets. In lake-rich landscapes, streams may be important sources of greenhouse gases (CO2 and CH4) to the atmosphere in addition to lakes, but their source strength is poorly documented. The processes which control gas concentrations and emissions in these interconnected landscapes of lakes, streams and groundwater have not been adequately addressed. In this paper we use multiple datasets that vary in their spatial and temporal extent to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the roles of lakes and groundwater. We show that streams emit roughly the same mass of CO2 as regional lakes, and that stream CH4 emissions are an important component of the regional greenhouse gas balance.
Contact
Creator
Dataset ID
307
Date Range
-
Metadata Provider
Methods
Sampling DesignSampling of gas partial pressures, and gas transfer velocities was performed weekly at five stream sites (Mann Creek, Allequash Lower Creek, Allequash Middle, Stevenson Creek, North Creek) that drain into Trout Lake (Figure 1), one of the regions larger lakes. Sampling began in May 2012 and continued through September 2012. These data were used to establish variability in gas transfer rates for the basin, and to investigate spatiotemporal patterns. To test for the effects of upstream lakes, sampling at 30 additional longitudinal transect sites along 6 streams (5 sites per stream; Figure 1) was conducted approximately every 3 weeks beginning in May 2012. Transect streams were chosen based on the presence or absence of lakes in the upstream watershed. Streams with lakes (Lost, White Sand, Aurora) were sampled starting at the approximate lake outlet (site selection based on aerial photographs), and along a 2000 m transect (0m, 250m, 500m, 1000m, 2000m). Upstream lake chemistry (epilimnion) was also sampled during late July or early August 2012 at the lake center to allow for a direct comparison with streams. Streams without upstream lakes (Stella, Mud, and North) were sampled at an arbitrary upstream location (0m) and followed the same sampling progression as streams with lakes. We analyzed stream chemistry and stream morphology data from a regional stream survey (Lottig and others 2011) which we use to scale fluxes to the NHLD (Figure 1). We also studied groundwater CO2 and CH4 patterns along a hillslope transect at Allequash Creek during 2001. In 2002, we monitored hourly CO2 and O2 dynamics at the four WEBB sites to assess the role of ecosystem metabolism.
NTL Keyword
Version Number
21