US Long-Term Ecological Research Network

Greenhouse gas emissions from streams at North Temperate Lakes LTER 2012

Abstract
Aquatic ecosystems can be important components of landscape carbon budgets. In lake-rich landscapes, streams may be important sources of greenhouse gases (CO2 and CH4) to the atmosphere in addition to lakes, but their source strength is poorly documented. The processes which control gas concentrations and emissions in these interconnected landscapes of lakes, streams and groundwater have not been adequately addressed. In this paper we use multiple datasets that vary in their spatial and temporal extent to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the roles of lakes and groundwater. We show that streams emit roughly the same mass of CO2 as regional lakes, and that stream CH4 emissions are an important component of the regional greenhouse gas balance.
Dataset ID
307
Date Range
-
Metadata Provider
Methods
Sampling DesignSampling of gas partial pressures, and gas transfer velocities was performed weekly at five stream sites (Mann Creek, Allequash Lower Creek, Allequash Middle, Stevenson Creek, North Creek) that drain into Trout Lake (Figure 1), one of the regions larger lakes. Sampling began in May 2012 and continued through September 2012. These data were used to establish variability in gas transfer rates for the basin, and to investigate spatiotemporal patterns. To test for the effects of upstream lakes, sampling at 30 additional longitudinal transect sites along 6 streams (5 sites per stream; Figure 1) was conducted approximately every 3 weeks beginning in May 2012. Transect streams were chosen based on the presence or absence of lakes in the upstream watershed. Streams with lakes (Lost, White Sand, Aurora) were sampled starting at the approximate lake outlet (site selection based on aerial photographs), and along a 2000 m transect (0m, 250m, 500m, 1000m, 2000m). Upstream lake chemistry (epilimnion) was also sampled during late July or early August 2012 at the lake center to allow for a direct comparison with streams. Streams without upstream lakes (Stella, Mud, and North) were sampled at an arbitrary upstream location (0m) and followed the same sampling progression as streams with lakes. We analyzed stream chemistry and stream morphology data from a regional stream survey (Lottig and others 2011) which we use to scale fluxes to the NHLD (Figure 1). We also studied groundwater CO2 and CH4 patterns along a hillslope transect at Allequash Creek during 2001. In 2002, we monitored hourly CO2 and O2 dynamics at the four WEBB sites to assess the role of ecosystem metabolism.
Version Number
21

South: Field Sampling Routine

A. Nutrient Sampling: Refer to the Field Sheet to see which bottles need to be sampled at which depths and the 'Southern Lakes LTER Bottle Codes’ for preservation, filtering, and coding information.
 
1.     Purge the lines: Whenever sampling from a new depth, the peristaltic pump tubing must be purged of the water from the previous depth. After reaching the proper sampling depth, use a graduated cylinder to measure the volume of water purged before beginning the sampling. Purge at least 1200 mL of water for each 20 meters of tu

South: Sampling Schedule

1. When to Sample: To determine the sampling dates, follow the same schedule as done in past years. It is best to make out the calendar for the whole year and sign-out a vehicle and boat far in advance. Check the past year’s sampling calendar for agreement in dates.
 
a.     The sampling schedule is made by working back from the Monday closest to September 1. 
1.     The September 1st week is considered a 'profile sampling' with more extensive nutrient and chlorophyll sampling (refer to the field sheets from the same sampling week

Parameter: Manganese

Samples for manganese analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, sodium, potassium, magnesium, and iron) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

Parameter: Iron

Samples for iron analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, sodium, potassium, magnesium, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

Parameter: Potassium

Samples for potassium analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, magnesium, sodium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

Parameter: Sodium

Samples for sodium analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, magnesium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

Parameter: Magnesium

Samples for magnesium analysis (as well as dissolved nitrogen and phosphorus, silicon, calcium, sodium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.

Parameter: Calcium

Samples for calcium analysis (as well as dissolved nitrogen and phosphorus, silicon, magnesium, sodium, potassium, iron, and manganese) are collected together with a peristaltic pump and tubing and in-line filtered (through a 40 micron polycarbonate filter) into 120 ml LDPE bottles and acidified to a 1% HCl matrix by adding 1 ml of ultra pure concentrated HCl to 100 mls of sample. For every sample acidification event, three acid blanks are created by adding the same acid used on the samples to 100 mls of ultra pure water supplied from the lab.
Subscribe to chemistry