US Long-Term Ecological Research Network

Lake Mendota Multiparameter Sonde Profiles: 2017 - current

Abstract
Intermittent sensor profiling at the deep hole of Lake Mendota began in 2017 with a YSI EXO2 multiparameter sonde. Parameters include water temperature, pH, specific conductivity, dissolved oxygen, chlorophyll, phycocyanin, turbidity, and fDOM. Profiles are nominally 0 - 20 meters in depth in one meter increments, although the depth range and increments vary.

Core Areas
Dataset ID
400
Date Range
-
Instrumentation
YSI EXO2 Sonde
Maintenance
on-going
Methods
see abstract
Publication Date
Version Number
4

Cascade project at North Temperate Lakes LTER - Daily Chlorophyll Data for Whole Lake Nutrient Additions 2013-2015

Abstract
Daily chlorophyll for surface water samples in Paul, Peter, and Tuesday lakes from mid-May to early September for the years 2013, 2014 and 2015. Inorganic nitrogen and phosphorus were added to Peter and Tuesday lakes each year while Paul Lake was an unfertilized reference.
Contact
Core Areas
Dataset ID
372
Date Range
-
Maintenance
completed
Methods
Methods are described in Wilkinson et al. 2018 (Ecological Monographs 88:188-203) and Pace et al. 2017 (Proceedings of the National Academy of Sciences USA 114: 352-357). These publications including supplements should be consulted for details.

Version Number
1

Cascade project at North Temperate Lakes LTER - High Frequency Data for Whole Lake Nutrient Additions 2013-2015

Abstract
High frequency continuous data for temperature, dissolved oxygen, pH, chlorophyll a, and phycocyanin in Paul, Peter, and Tuesday lakes from mid-May to early September for the years 2013, 2014 and 2015. Inorganic nitrogen and phosphorus were added to Peter and Tuesday lakes each year while Paul Lake was an unfertilized reference.
Contact
Dataset ID
371
Date Range
-
LTER Keywords
Maintenance
complete
Methods
Methods are described in Wilkinson et al. 2018 (Ecological Monographs 88:188-203) and Pace et al. 2017 (Proceedings of the National Academy of Sciences USA 114: 352-357). These publications including supplements should be consulted for details.
In Paul, Peter and Tuesday lakes two sondes were deployed at 0.75 meters near lake center. One sonde was a Hydrolab (model DS5X) with temperature, oxygen, pH, phycocyanin, and chlorophyll a sensors. One sonde was a Yellow Springs Instruments (YSI) 6600-V2-4 with temperature, dissolved oxygen, pH, phycocyanin, and chlorophyll a sensors. Measurements were made every five minutes. Brief gaps in the data record due to calibration or sensor malfunction were interpolated using a bivariate autoregressive state-space model with the MARSS package in R version 3.9 to create a continuous daily time series.
Version Number
1

Microbial Observatory at North Temperate Lakes LTER Spatial and temporal cyanobacterial population dynamics in Lake Mendota 2009 - 2011

Abstract
Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N<sub>2</sub> fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic <em>Microcystis</em> blooms throughout the growing season. On weekly time scales in 2010 and *2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N<sub>2</sub> fixation rates, and potential environmental drivers that contribute to structuring the community.
Core Areas
Dataset ID
299
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Field sample collection and processingAt each location, temperature, dissolved oxygen (DO), and pH were collected at 1 m increments from the surface to the maximum depth (YSI 556MPS). Photic zone depth was defined at 1percent of photosynthetically active radiation (PAR) as measured using a PAR sensor (LiCor 192SA). Integrated photic zone samples were then collected using a weighted 2-inch diameter polypropylene tube. Samples for DNA, nutrients, toxins, and pigment analyses were collected in acid-washed, sterile bottles, (rinsed three times with in situ water before collection) and stored on ice until further processing.Once transported back to the lab, samples were immediately processed. For dissolved reactive phosphorus (DRP), total dissolved phosphorus (TDP), total dissolved nitrogen (TDN), nitrate, and nitrite, 100 mL of water was filtered through a Whatman glass fiber filter (GForF) and frozen at -20 degreeC. For TP and total nitrogen (TN), HCl was added to 100mL of sample to a final concentration of 0.1percent and stored at -20 degreeC. Ammonium samples were immediately measured to avoid oxidation during freezing. Chlorophyll-a and phycocyanin samples were collected onto GForF filters and stored in black tubes at -20 degreeC. For community analysis (DNA), samples were filtered onto 0.2 &micro;m polyethersulfone membrane filters (Supor-200; Pall Corporation) and frozen at -20 degreeC until extraction. 20 mL of unfiltered water was preserved in formalin (3percent final concentration) and stored at room temperature in the dark for microscopy. An additional 50 mL of unfiltered water was stored at -20 degreeC for toxin analysis.Analytical measurementsDRP was measured by the ascorbic acid-molybdenum blue method 4500 P E (Greenberg et al. 1992). Ammonium was measured spectrophotometrically (Solórzano 1969). Nitrate and nitrite were measured individually using high-performance liquid chromatography (HPLC) (Flowers et al. 2009). TPorTDP and TNorTDN were digested as previously described (White et al. 2010), prior to analysis as for DRP and nitrate. For TDN and TN, the resulting solution was oxidized completely to nitrate and was measured via HPLC as above. Nitrate, nitrite, and ammonium were summed and reported as dissolved inorganic nitrogen (DIN).Phycocyanin was extracted in 20 mM sodium acetate buffer (pH 5.5) following three freeze-thaw cycles at -20 &ordm;C and on ice, respectively. The extract was centrifuged and then measured spectrophotometrically at 620 nm with correction at 650 nm (Demarsac and Houmard 1988). Chlorophyll-a (Chl-a) was extracted overnight at -20 &ordm;C in 90percent acetone and then measured spectrophotometrically with acid correction (Tett et al. 1975).For toxin analysis, whole water samples were lyophilized, resuspended in 5percent acetic acid, separated by solid phase extraction (SPE; Bond Elut C18 column, Varian), and eluted in 50percent methanol as previously described (Harada et al. 1988). Microcystin (MC) variants of leucine (L), arginine (R), and tyrosine (Y) were detected and quantified at the Wisconsin State Lab of Hygiene (SLOH) using liquid chromatography electrospray ionization tandem mass spectroscopy (API 3200, MSorMS) after separation by HPLC (Eaglesham et al. 1999). We report only MCLR concentrations since MCYR and MCRR were near the limit of quantification for the sampling period (0.01 &micro;g L-1).In situ N2 fixation measurementsN2 fixation rates were measured, with some modifications, following the acetylene reduction assay (Stewart et al. 1967). A fresh batch of acetylene was generated each day before sampling by combing 1 g of calcium carbide (Sigma Aldrich 270296) with 100 mL ddH2O. Following sample collection, 1 L of water was concentrated by gentle filtration onto a 47 mm GForF filter in the field. The filter was then gently washed into a 25 mL serum bottle using the lake water filtrate (final volumes 10 mL aqueous, 15 mL gas). Samples were spiked with 1 mL of acetylene gas and incubated in situ for two hours. The assay was terminated with 5percent final concentration trichloracetic acid and serum bottles were transported back to the lab. For each sampling period, rates were controlled and corrected for using a series of the following incubated acetylene blanks: 1) 1 mL of acetylene in filtrate alone, 2) 1 mL of acetylene in a killed sample, and 3) 1 mL of acetylene in ddH2O. Ethylene formed was measured by a gas chromatograph (GC; Shimadzu GC-8A) equipped with a flame ionization detector (FID), Porapak N column (80or100 mesh, 1or8OD x 6), and integrator (Hewlett Packard 3396) with N2 as the carrier gas (25 mL min-1 flow rate). Molar N2 fixation rates were estimated using a 1:4 ratio of N2 fixed to ethylene formed (Jensen and Cox 1983). All N2 fixation values are reported as integrated photic zone rates of &micro;g N L-1 hr-1.DNA extraction and processing of PC-IGS fragmentDNA was extracted from frozen filters using a xanthogenate-phenol-chloroform protocol previously described (Miller and McMahon 2011). For amplification of the phycocyanin intergenic spacer (PC-IGS) region, we used primers PCalphaR (5-CCAGTACCACCAGCAACTAA-3) and PCbetaF (5-GGCTGCTTGTTTACGCGACA-3, 6-FAM-labelled) and PCR conditions that were previously described (Neilan et al. 1995). Briefly, each 50 &micro;l reaction mixture contained 5 &micro;l of 10X buffer (Promega, Madison, WI), 2.5 &micro;l of dNTPs (5 mM), 2 &micro;l of forward and reverse primers (10 &micro;M), 2 &micro;l of template DNA, and 0.5 &micro;l of Taq DNA polymerase (5 U &micro;l-1). Following precipitation with ammonium acetate and isopropanol, the DNA pellet was resuspended in ddH2O and digested for 2 hrs at 37 &ordm;C using the MspI restriction enzyme, BSA, and Buffer B (Promega, Madison, WI). The digested product was precipitated and then resuspended in 20 &micro;L of ddH2O. 2 &micro;L of final product was combined with 10 &micro;L of formamide and 0.4 &micro;L of a custom carboxy-x-rhodamine (ROX) size standard (BioVentures, Inc).Cyanobacterial PC-IGS community fingerprinting and cell countsWe analyzed the cyanobacterial community using an automated phycocyanin intergenic spacer analysis (APISA) similar to the automated ribosomal intergenic spacer analysis (ARISA) previously described (Yannarell et al. 2003). Briefly, this cyanobacterial-specific analysis exploits the variable PC-IGS region of the phycocyanin operon (Neilan et al. 1995). Following MspI digestion, the variable lengths of the PC-IGS fragment can be used to identify subgenus level taxonomic units of the larger cyanobacterial community (Miller and McMahon 2011). The MspI fragments were sized using denaturing capillary electrophoresis (ABI 3730xl DNA Analyzer; University of Wisconsin Biotechnology Center (UWBC)). For each sample, triplicate electropherogram profiles were analyzed using GeneMarker&reg; (SoftGenetics) software v 1.5. In addition, a script developed in the R Statistics Environment was used to distinguish potential peaks from baseline noise (Jones and McMahon 2009, Jones et al. 2012). Relative abundance data output from this script were created using the relative proportion of fluorescence each peak height contributed per sample. Aligned, overlapping peaks were binned into subgenus taxonomic units (Miller and McMahon 2011). These taxa were named based on the genus and base pair length of the PC-IGS fragment identified (e.g. For Mic215, Mic = Microcystis and 215 = 215 base pair fragment). Fragment lengths were matched to an in silico digested database of PC-IGS sequences using the Phylogenetic Assignment Tool (https:ororsecure.limnology.wisc.eduortrflpor).The NTL-LTER program collects biweekly phytoplankton samples between April and September for cell counts and detailed descriptions of the field and laboratory protocols are available online at http:ororlter.limnology.wisc.edu. When indicated, biomass has been converted to mg L-1 using the biovolume calculated during the cell count process and assuming a density equivalent to water.
Version Number
22

Phytoplankton Processing by PhycoTech

PhycoTech is the only commercial lab in North America to utilize a unique proprietary permanent mounting technique for archiving and preparing samples for enumeration. These mounts allow you to get further data at a later date, as well as maintain a permanent archive of the sample that is easily stored, maintains fluorescence, and does not degrade with time (100+ years).

North Temperate Lakes LTER: Phytoplankton - Madison Lakes Area 1995 - current

Abstract
Phytoplankton samples for the 4 southern Wisconsin LTER lakes (Mendota, Monona, Wingra, Fish) have been collected for analysis by LTER since 1995 (1996 Wingra, Fish) when the southern Wisconsin lakes were added to the North Temperate Lakes LTER project. Samples are collected as a composite whole-water sample and are preserved in gluteraldehyde. Composite sample depths are 0-8 meters for Lake Mendota (to conform to samples collected and analyzed since 1990 for a UW/DNR food web research study), and 0-2 meters for the other three lakes. A tube sampler is used for the 0-8 m Lake Mendota samples; samples for the other lakes are obtained by collecting water at 1-meter intervals using a Kemmerer water sampler and compositing the samples in a bucket. Samples are taken in the deep hole region of each lake at the same time and location as other limnological sampling. Phytoplankton samples are analyzed by PhycoTech, Inc., a private lab specializing in phytoplankton analyses (see data protocol for procedures). Samples for Wingra and Fish lakes are archived but not routinely counted. Permanent slide mounts (3 per sample) are prepared for all analyzed Mendota and Monona samples as well as 6 samples per year for Wingra and Fish; the slide mounts are archived at the University of Wisconsin - Madison Zoology Museum. Phytoplankton are identified to species using an inverted microscope (Utermohl technique) and are reported as natural unit (i.e., colonies, filaments, or single cells) densities per mL, cell densities per mL, and algal biovolume densities per mL. Multiple entries for the same species on the same date may be due to different variants or vegetative states - (e.g., colonial or attached vs. free cell.) Biovolumes for individual cells of each species are determined during the counting procedure by obtaining cell measurements needed to calculate volumes for geometric solids (e.g., cylinders, spheres, truncated cones) corresponding to actual cell shapes. Biovolume concentrations are then computed by mulitplying the average cell biovolume by the cell densities in the water sample. Note that one million cubicMicrometers of biovolume PerMilliliter of water are equal to a biovolume concentration of one cubicMillimeterPerMilliliter. Assuming a cell density equal to water, a cubicMillimeterPerMilliliter of biovolume converts to a biomass concentration of one milligramPerLiter. Sampling Frequency: bi-weekly during ice-free season from late March or early April through early September, then every 4 weeks through late November; sampling is conducted usually once during the winter (depending on ice conditions). Number of sites: 4
Several taxonomic updates have been made to this dataset February 2013, see methods for details.
Dataset ID
88
Date Range
-
Maintenance
ongoing
Metadata Provider
Methods
Water samples are taken along routine sampling and then prepared into permanent slides by the company Phyco Tech. Slides are available for all years, however, species may not have been determined for all available slides.
several taxonomic updates were implemented in February 2013, this includes simple name changes to currently accepted names, changes from genus level to species based on long term experience by Phyco Tech, and some slides were revisited to resolve taxonomic uncertainty.
1) Converted all Melosira entries to Aulacoseira. The species names have been changed appropriately. 2) Converted all Oscillatoria entries to Psuedanabaena. The species names have been changed appropriately. 3) Converted all Synedra tenera to Synedra filiformis. 4) Converted all Phacotus entries without a species name to Phacotus lendneri. 5) Converted all Phormidium mucicola to Psuedanabaena 6) Converted Glenodinium entries without a species name to Glenodinium quadridens 7) Assume that all other entries with genera names but not species names cannot be resolved to species. 8) Converted all Chrysococcus entries to Chrysocccus minutus 9) Changed some single-celled Microcystis entries so that they would match the format of the colonial entries (genus + species) 10) Resolved some entries to species that were previously coded incorrectly by genus. 11) Added in Cylindrospermopsis raciborskii entries that were recently recounted and changed from Anabaenopsis raciborskii. 12) Converted all entries of genus Erkenia to Erkenia subaequiciliata
Short Name
NTLPL05
Version Number
30

North Temperate Lakes LTER: Phytoplankton - Trout Lake Area 1984 - current

Abstract
Phytoplankton samples from the seven LTER lakes in the Trout Lake area (Allequash, Big Muskellunge, Crystal, Sparkling, and Trout lakes and bog lakes 27-02 [Crystal Bog], and 12-15 [Trout Bog]) are collected six times per year at the deep hole sampling station at the same time our other limnological sampling is conducted. Sampling dates include winter under ice, spring mixis, June, July, August, and fall mixis. Phytoplankton samples are made into permanent slide mounts, 3 slides per sample, and are archived at the University of Wisconsin - Madison Zoology Museum. Slides are available for all years, however species identification and counts have not been done for all available slides. Sampling Frequency: 6 samples per year. Number of sites: 7
Dataset ID
238
Date Range
-
LTER Keywords
Maintenance
ongoing
Metadata Provider
Methods
Phytoplankton samples are collected using a peristaltic pump and tubing, collecting a separate sample from the epilimnion, metalimnion and hypolimnion for most of the lakes. For 27-2 Bog Lake, which is only 2m deep, we collect one 0-2m composite sample. The samples are preserved with Lugol's iodine solution. We create a single hypsometrically pooled composite sample per lake from subsamples of the epi, meta, and hypo samples. The pooled samples are sent to PhycoTech, Inc., a private lab specializing in plankton analysis, to be made into permanent slide mounts. The slides are archived, and no wet samples are saved.
Short Name
NTLPL08
Version Number
19
Subscribe to algae