US Long-Term Ecological Research Network

Trout Lake USGS Water, Energy, and Biogeochemical Budgets (WEBB) Stream Data 1975-current

Abstract
This data was collected by the United States Geological Survey (USGS) for the Water, Energy, and Biogeochemical Budget Project. The data set is primarily composed of water chemistry variables, and was collected from four USGS stream gauge stations in the Northern Highland Lake District of Wisconsin, near Trout Lake. The four USGS stream gauge stations are Allequash Creek at County Highway M (USGS-05357215), Stevenson Creek at County Highway M (USGS-05357225), North Creek at Trout Lake (USGS-05357230), and the Trout River at Trout Lake (USGS-05357245), all near Boulder Junction, Wisconsin. The project has collected stream water chemistry data for a maximum of 36 different chemical parameters,. and three different physical stream parameters: temperature, discharge, and gauge height. All water chemistry samples are collected as grab samples and sent to the USGS National Water Quality Lab in Denver, Colorado. There is historic data for Stevenson Creek from 1975-1977, and then beginning again in 1991. The Trout Lake WEBB project began during the summer of 1991 and sampling of all four sites continues to date.
Creator
Dataset ID
276
Date Range
-
Maintenance
Completed.
Metadata Provider
Methods
DL is used to represent “detection limit” where known.NOTE (1): Each method listed below corresponds with a USGS Parameter Code, which is listed after the variable name. NOTE (2): If the NEMI method # is known, it is also specified at the end of each method description.NOTE (3): Some of the variables are calculated using algorithms within QWDATA. If this is the case see Appendix D of the NWIS User’s Manual for additional information. However, appendix D does not list the algorithm used by the USGS. If a variable is calculated with an algorithm the term: algor, will be listed after the variable name.anc: 99431, Alkalinity is determined in the field by using the gran function plot methods, see TWRI Book 9 Chapter A6.1. anc_1: 90410 and 00410, Alkalinity is determined by titrating the water sample with a standard solution of a strong acid. The end point of the titration is selected as pH 4.5. See USGS TWRI 5-A1/1989, p 57, NEMI method #: I-2030-89.2. c13_c12_ratio: 82081, Exact method unknown. The following method is suspected: Automated dual inlet isotope ratio analysis with sample preparation by precipitation with ammoniacal strontium chloride solution, filtration, purification, acidified of strontium carbonate; sample size is greater than 25 micromoles of carbon; one-sigma uncertainty is approximately ± 0.1 ‰. See USGS Determination of the delta13 C of Dissolved Inorganic Carbon in Water, RSIL Lab Code 1710. Chapter 18 of Section C, Stable Isotope-Ratio Methods Book 10, Methods of the Reston Stable Isotope Laboratory.3. ca, mg, mn, na, and sr all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:ca- 00915, mg- 00925, mn- 01056, na- 00930, sr- 01080All metals are determined simultaneously on a single sample by a direct reading emission spectrometric method using an inductively coupled argon plasma as an excitation source. Samples are pumped into a crossflow pneumatic nebulizer, and introduced into the plasma through a spray chamber and torch assembly. Each analysis is determined on the basis of the average of three replicate integrations, each of which is background corrected by a spectrum shifting technique except for lithium (670.7 nm) and sodium (589.0 nm). A series of five mixed-element standards and a blank are used for calibration. Method requires an autosampler and emission spectrometry system. See USGS OF 93-125, p 101, NEMI Method #: I-1472-87.DL’s: ca- .02 mg/l, mg-.01 mg/l, mn-1.0 ug/l, na- .2 mg/l, sr- .5 ug/l4. cl, f, and so4 all share the same method. The USGS parameter codes are listed first, then the method description with NEMI method #, and finally DL’s:cl- 00940, f-00950, so4-00945All three anions (chloride, flouride, and sulfate) are separated chromatographically following a single sample injection on an ion exchange column. Ions are separated on the basis of their affinity for the exchange sites of the resin. The separated anions in their acid form are measured using an electrical conductivity cell. Anions are identified on the basis of their retention times compared with known standards. 19 The peak height or area is measured and compared with an analytical curve generated from known standards to quantify the results. See USGS OF 93-125, p 19, NEMI method #: I-2057.DL’s: cl-.2 mg/l, f-.1 mg/l, so4-.2 mg/lco2: 00405, algor, see NWIS User's Manual, QW System, Appendix D, Page 285.co3: 00445, algor.color: 00080, The color of the water is compared to that of the colored glass disks that have been calibrated to correspond to the platinum-cobalt scale of Hazen (1892), See USGS TWRI 5-A1 or1989, P.191, NEMI Method #: I-1250. DL: 1 Pt-Co colorconductance_field: 00094 and 00095, specific conductance is determined in the field using a standard YSI multimeter, See USGS TWRI 9, 6.3.3.A, P. 13, NEMI method #: NFM 6.3.3.A-SW.conductance_lab: 90095, specific conductance is determined by using a wheat and one bridge in which a variable resistance is adjusted so that it is equal to the resistance of the unknown solution between platinized electrodes of a standardized conductivity cell, sample at 25 degrees celcius, See USGS TWRI 5-A1/1989, p 461, NEMI method #: I-1780-85.dic: 00691, This test method can be used to make independent measurements of IC and TC and can also determine TOC as the difference of TC and IC. The basic steps of the procedure are as follows:(1) Removal of IC, if desired, by vacuum degassing;(2) Conversion of remaining inorganic carbon to CO<sub>2</sub> by action of acid in both channels and oxidation of total carbon to CO<sub>2</sub> by action of ultraviolet (UV) radiation in the TC channel. For further information, See ASTM Standards, NEMI method #: D6317. DL: n/adkn: 00623 and 99894, Organic nitrogen compounds are reduced to the ammonium ion by digestion with sulfuric acid in the presence of mercuric sulfate, which acts as a catalyst, and potassium sulfate. The ammonium ion produced by this digestion, as well as the ammonium ion originally present, is determined by reaction with sodium salicylate, sodium nitroprusside, and sodium hypochlorite in an alkaline medium. The resulting color is directly proportional to the concentration of ammonia present, see USGS TWRI 5-A1/1989, p 327, NEMI method #: 351.2. DL: .10 mg/Ldo: 0300, Dissolved oxygen is measured in the field with a standard YSI multimeter, NEMI Method #: NFM 6.2.1-Lum. DL: 1 mg/L.doc: 00681, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS OF 92-480, NEMI Method #: O-1122-92. DL: .10 mg/L.don: 00607, algor, see NWIS User's Manual, QW System, Appendix D, page 291.dp: 00666 and 99893, All forms of phosphorus, including organic phosphorus, are converted to orthophosphate ions using reagents and reaction parameters identical to those used in the block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and mercury (II) at a temperature of 370 deg, see USGS OF Report 92-146, or USGS TWRI 5-A1/1979, p 453, NEMI method #: I-2610-91. DL= .012 mg/L.fe: 01046, Iron is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame, see USGS TWRI 5-A1/1985, NEMI method #: I-1381. DL= 10µg/L.h_ion: 00191, algor.h20_hardness: 00900, algor.h20_hardness_2: 00902, algor.hco3: 00440, algor.k: 00935, Potassium is determined by atomic absorption spectrometry by direct aspiration of the sample solution into an air-acetylene flame , see USGS TWRI 5-A1/1989, p 393, NEMI method #: I-1630-85. DL= .01 mg/L.n_mixed: 00600, algor.n_mixed_1: 00602, algor.n_mixed_2: 71887, algor.nh3_nh4: 00608, Ammonia reacts with salicylate and hypochlorite ions in the presence of ferricyanide ions to form the salicylic acid analog of indophenol blue (Reardon and others, 1966; Patton and Crouch, 1977; Harfmann and Crouch, 1989). The resulting color is directly proportional to the concentration of ammonia present, See USGS OF 93-125, p 125/1986 (mg/l as N), NEMI Method #: I-2525. DL= .01 mg/L.nh3_nh4_1: 71846, algor.nh3_nh4_2: 00610, same method as 00608, except see USGS TWRI 5-A1/1989, p 321. DL = .01 mg/L.nh3_nh4_3: 71845, algor.no2: 00613, Nitrite ion reacts with sulfanilamide under acidic conditions to form a diazo compound which then couples with N-1-naphthylethylenediamine dihydrochloride to form a red compound, the absorbance of which is measured colorimetrically, see USGS TWRI 5-A1/1989, p 343, NEMI method #: I-2540-90. DL= .01 mg/L.no2_2: 71856, algor.no3: 00618, Nitrate is determined sequentially with six other anions by ion-exchange chromatography, see USGS TWRI 5-A1/1989, P. 339, NEMI method #: I-2057. DL= .05 mg/L.no3_2: 71851, algor.no32: 00630, An acidified sodium chloride extraction procedure is used to extract nitrate and nitrite from samples of bottom material for this determination(Jackson, 1958). Nitrate is reduced to nitrite by cadmium metal. Imidazole is used to buffer the analytical stream. The sample stream then is treated with sulfanilamide to yield a diazo compound, which couples with N-lnaphthylethylenediamine dihydrochloride to form an azo dye, the absorbance of which is measured colorimetrically. Procedure is used to extract nitrate and nitrite from bottom material for this determination (Jackson, 1958), see USGS TWRI 5-A1/1989, p 351. DL= .1 mg/Lno32_2: 00631, same as description for no32, except see USGS OF 93-125, p 157. DL= .1 mg/L.o18_o16_ratio: 82085, Sample preparation by equilibration with carbon dioxide and automated analysis; sample size is 0.1 to 2.0 milliliters of water. For 2-mL samples, the 2-sigma uncertainties of oxygen isotopic measurement results are 0.2 ‰. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. Water is extracted from soils and plants by distillation with toluene; recommended sample size is 1-5 ml water per analysis, see USGS Determination of the Determination of the delta (18 O or 16O) of Water, RSIL Lab Code 489.o2sat: Dissolved oxygen is measured in the field with a standard YSI multimeter, which also measures % oxygen saturation, NEMI Method #: NFM 6.2.1-Lum.ph_field: 00400, pH determined in situ, using a standard YSI multimeter, see USGS Techniques of Water-Resources Investigations, book 9, Chaps. A1-A9, Chap. A6.4 "pH," NEMI method # NFM 6.4.3.A-SW. DL= .01 pH.ph_lab: 00403, involves use of laboratory pH meter, see USGS TWRI 5-A1/1989, p 363, NEMI method #: I-1586.po4: 00660, algor, see NWIS User's Manual, QW System, Appendix D, Page 286.po4_2: 00671, see USGS TWRI 5-A1/1989, NEMI method #: I-2602. DL= .01 mg/L.s: 63719, cannot determine exact method used. USGS method code: 7704-34-9 is typically used to measure sulfur as a percentage, with an DL =.01 µg/L. It is known that the units for sulfur measurements in this data set are micrograms per liter.sar: 00931, algor, see NWIS User's Manual, QW System, Appendix D, Page 288.si: 00955, Silica reacts with molybdate reagent in acid media to form a yellow silicomolybdate complex. This complex is reduced by ascorbic acid to form the molybdate blue color. The silicomolybdate complex may form either as an alpha or beta polymorph or as a mixture of both. Because the two polymorphic forms have absorbance maxima at different wavelengths, the pH of the mixture is kept below 2.5, a condition that favors formation of the beta polymorph (Govett, 1961; Mullen and Riley, 1955; Strickland, 1952), see USGS TWRI 5-A1/1989, p 417, NEMI method #: I-2700-85. DL= .10 mg/L.spc: 00932, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds: 70300 and 70301, A well-mixed sample is filtered through a standard glass fiber filter. The filtrate is evaporated and dried to constant weight at 180 deg C, see " Filterable Residue by Drying Oven," NEMI method #: 160.1, DL= 10 mg/l. Note: despite DL values occur in the data set that are less than 10 mg/l.tds_1: 70301, algor, see NWIS User's Manual, QW System, Appendix D, Page 289.tds_2: 70303, algor, see NWIS User's Manual, QW System, Appendix D, Page 290.tkn: 00625 and 99892, Block digester procedure for determination of organic nitrogen plus ammonia, that is, sulfuric acid, potassium sulfate, and Mercury (II) at a temperature of 370°C. See the USGS Open File Report 92-146 for further details. DL: .10 mg/L.toc: 00680, The sample is acidified, purged to remove carbonates and bicarbonates, and the organic carbon is oxidized to carbon dioxide with persulfate, in the presence of an ultraviolet light. The carbon dioxide is measured by nondispersive infrared spectrometry, see USGS TWRI 5-A3/1987, p 15, NEMI Method #: O-1122-92. DL=.10 mg/L.ton: 00605, algor, See NWIS User's Manual, QW System, Appendix D, page 286.tp: 00665 and 99891, This method may be used to analyze most water, wastewater, brines, and water-suspended sediment containing from 0.01 to 1.0 mg/L of phosphorus. Samples containing greater concentrations need to be diluted, see USGS TWRI 5-A1/1989, p 367, NEMI method #: I-4607. tp_2: 71886, algor.tpc: 00694, The basic steps of this test method are:1) Conversion of remaining IC to CO2 by action of acid, 2) Removal of IC, if desired, by vacuum degassing, 3) Split of flow into two streams to provide for separate IC and TC measurements, 4) Oxidation of TC to CO2 by action of acid-persulfate aided by ultraviolet (UV) radiation in the TC channel, 5) Detection of CO2 by passing each liquid stream over membranes that allow the specific passage of CO2 to high-purity water where change in conductivity is measured, and 6) Conversion of the conductivity detector signal to a display of carbon concentration in parts per million (ppm = mg/L) or parts per billion (ppb = ug/L). The IC channel reading is subtracted from the TC channel reading to give a TOC reading, see ASTM Standards, NEMI Method #: D5997. DL= .06 µg/L.tpn: 49570, A weighed amount of dried particulate (from water) or sediment is combusted at a high temperature using an elemental analyzer. The combustion products are passed over a copper reduction tube to covert nitrogen oxides to molecular nitrogen. Carbon dioxide, nitrogen, and water vapor are mixed at a known volume, temperature, and pressure. The concentrations of nitrogen and carbon are determined using a series of thermal conductivity detectors/traps, measuring in turn by difference hydrogen (as water vapor), carbon (as carbon dioxide), and nitrogen (as molecular nitrogen). Procedures also are provided to differentiate between organic and inorganic carbon, if desired, see USEPA Method 440, NEMI method #: 440. DL= .01 mg/L.
Short Name
TL-USGS-WEBB Data
Version Number
15

North Temperate Lakes LTER: Northern Highlands Stream Chemistry Survey 2006

Abstract
We compared regional patterns in lake and stream biogeochemistry in the Northern Highlands Lake District (NHLD), Wisconsin, USA to ask how regional biogeochemistry differs as a function of the type of ecosystem considered (i.e., lakes versus streams); if lake-stream comparisons reveal regional patterns and processes that are not apparent from studies of a single ecosystem type; and if characteristics of streams and lakes scale similarly. Fifty-two streams were sampled using a stratified random design to determine regional distribution of 21 water chemistry variables during summer baseflow conditions.Sampling Frequency: once per site Number of sites: 52
Contact
Core Areas
Dataset ID
254
Date Range
-
Maintenance
completed
Metadata Provider
Methods
Site SelectionBecause lakes are a dominant feature of the region and stream characteristics could potentially differ based on their hydrologic connections to lakes, we classified streams into three categories as a function of their hydrologic connections to lakes. The first category was streams that had no lakes within the drainage network upstream of the sampling location. The second category was streams that originated from headwater lakes (i.e., no stream inlet but a stream outlet) and the headwater lake was the only lake in the drainage network above the sampling location. The final category had at least a single drainage lake (i.e., a lake with both stream inlet(s) and outlet) in the drainage network above the sampling location. We then used these categories to select sampling sites using a stratified random design for a variety of chemical and physical characteristics.All streams identified on 1:24,000 7.5 inch USGS topographical maps that crossed access points were selected as potential sampling locations and assigned to one of the three stream types. A stream could be classified by more than a single category depending on the sampling location within the drainage network. However, a single drainage network was never sampled more than once to ensure sample independence. Of the 500 possible sampling locations, 52 sites were selected and sampled.SamplingAll streams were sampled 7-10 channel widths upstream of an access point to minimize any influences caused by culverts and other features. Water samples were collected from the center of the channel using a peristaltic pump. Stream discharge was measured after Gore (2007) using cross sectional area and water velocity.Chemical AnalysesAll samples for both studies were collected and processed following the North Temperate Long Term Ecological Research (NTL-LTER) protocols (http://lter.limnology.wisc.edu). Filtering was done in the field using an in-line 0.45 μm membrane filter. All samples were stored on ice and returned to the laboratory where they were preserved according to NTL-LTER protocols. Acid neutralizing capacity (ANC) was determined by Gran titration (APHA 2005). DOC was measured on a Shimadzu TOC-V carbon analyzer. Total nitrogen and phosphorus (unfiltered, TN and TP; filtered, TDN and TDP), nitrate+nitrite (NO3-N), and ammonium (NH4-N) were quantified with an Astoria-Pacific segmented flow auto-analyzer. Soluble reactive phosphorus (SRP) in streams was measured colormetrically on a Beckman DU-800 spectrophotometer (APHA 2005). Anions (Cl- and SO4 2-) were measured using a Dionix DX-500 ion chromatograph and cations (Ca, Mg, Na, K, Fe, K, and Mn) on a Perkin Elmer ICP mass spectrometerDissolved inorganic carbon (DIC) and pH were quantified differently in the lakes and stream data sets. For the lakes data, DIC was determined with a Shimadzu TOC-V carbon analyzer, whereas DIC for the streams dataset was determined by headspace equilibration of acidified water samples in the field and direct measurement of carbon dioxide (CO2) gas on a Shimadzu gas chromatograph (Cole et al. 1994). pH measurements for the lakes dataset were quantified on non-air equilibrated samples in the lab with a Accumet 950 pH meter while direct measurements were taken in the field for the streams dataset using a hand-held Orion model 266 pH meter that was allowed to equilibrated about 20 min in the center for the stream channel.Several variables presented in this study were determined from calculations based on measured values. In streams, dissolved organic nitrogen and phosphorus (DON and DOP, respectively) were determined by the difference between inorganic nutrients and total dissolved nutrients (e.g., DOP = TDP-SRP). We were unable to determine DON in lakes due to the lack of inorganic nitrogen data. It was assumed that DOP approximately equals TDP in lakes because dissolved inorganic phosphorus concentrations in the region are typically below detection limits in the epilimnion during the summer months and consequently not quantified (NTL-LTER unpublished data).
Short Name
LOTTIG2
Version Number
19
Subscribe to acid neutralizing capacity