US Long-Term Ecological Research Network

Aquatic macrophyte, snail, and crayfish abundance and richness data for ten lakes in Vilas County, WI, USA, 1987-2020

Abstract
Data accompanying the paper Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)." Macrophytes and snails were sampled in ten lakes in Vilas County, Wisconsin, USA during summer sampling events in 1987, 2002, 2011, and 2020. Lakes had varying levels of invasion by F. rusticus, which affected measures of macrophytes and snails. Macrophytes were sampled using a point-intercept transect method and snails were sampled using different sampler types which were dependent on substrate. Macrophytes were sampled at 6-14 sites per lake and snails were sampled at 16-31 sites per lake. Crayfish were regularly sampled at either 24 or 36 sites per lake between 1987 and 2020. Overall, this dataset provides abundance and richness data for over 25 species of snails and over 40 species of macrophytes in 10 north temperate lakes.<br/>
Dataset ID
417
Methods
Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>Sampling methods are described by Szydlowski et al. "Macrophyte and snail community responses to 30 years of population declines of invasive rusty crayfish (Faxonius rusticus)," but are provided here for convenience. Instrumentation is further documented in the supplementary information of the paper.<br/>
Version Number
2

Fish catch and biomass per unit effort from McDermott and Sandy Beach Lakes 2017-2020

Abstract
Centarchidae spp., a warm-adapted group of fishes including basses and sunfishes, has increased in recent decades in Wisconsin. Concurrently, declines in cool-adapted species, including Walleye (Sander vitreus), have occurred but the cause is not understood. Multiple factors have been associated with these declines, including rising lake temperatures, habitat degradation, harvest, and species interactions. To quantify the role that competition and/or predation between increasing centrarchids and the rest of the fish community plays, we are conducting a whole-lake experiment to remove centrarchids from an experimental lake in northern Wisconsin while measuring the response of all other fish species. In 2018 and 2019, ~200,000 centrarchid individuals were removed, while species-specific catch-per-unit-effort (CPUE) and biomass-per-unit-effort (BPUE) were measured. Yellow Perch have increased in CPUE and BPUE, while centrarchid abundances have declined. We will continue removing centrarchids in 2021 and monitoring these populations. This information will be used to inform an understanding of the conditions necessary to support self-sustaining fish populations given global environmental change.<br/>
Core Areas
Creator
Dataset ID
398
Date Range
-
Maintenance
ongoing
Methods
Study area
The experimental (McDermott Lake; 46.00299280, -90.16081610) and reference (Sandy Beach Lake (46.10614350, -89.97131020) systems are located in Iron County in Northern, Wisconsin. McDermott Lake has a surface area of 33.1 ha and a mean depth of 3.0 m, while Sandy Beach Lake has a surface area of 44.5 ha and a mean depth of 2.1 m. Maximum depth in McDermott Lake is 5.7 m and in Sandy Beach Lake is 4.0 m. Both lakes include a variety of substrates (e.g., rock, gravel, and sand) and areas of submerged and emergent vegetation. At the start of the study, McDermott and Sandy Beach Lake fish communities were similar with high Centrarchidae spp. (i.e., centrarchid) abundances, few adult walleye, and a history of natural walleye recruitment. Other species present include yellow perch, northern pike, muskellunge, black bullhead, and white sucker (Table 1).
Fish sampling
Standardized surveys
From 2017-2020, we conducted fish population sampling on the experimental (McDermott) and reference (Sandy Beach) lakes. Every year of the study, we have conducted standardized monitoring surveys employing numerous sampling techniques to detect changes in the fish community relative to 2017-baseline information (Fig. 1). Sampling began immediately following ice-out (~mid-April) with the deployment of five fyke nets for one week. The fyky surveys served two purposes: 1) to serve as the capture method for marking walleye as part of the mark-recapture survey to attain a population estimate, and 2) to estimate other focal species (i.e., black crappie, yellow perch, muskellunge, northern pike) relative abundances. During these surveys, all collected walleye were measured (total length (TL); mm), sexed, checked for a Passive Integrated Responder (PIT) tag, and if one was not present, marked with a unique PIT tag. We also removed a dorsal spine sample for aging. Adult (mature) walleyes were defined as all fish 381 mm and all fish for which sex could be determined (regardless of length). Walleye of unknown sex &lt;381 mm were classified as juvenile (immature). McDermott and Sandy Beach Lakes have both had walleye population estimates previously conducted by the Wisconsin Department of Natural Resources (WDNR) therefore the goal was to mark 10% of the anticipated spawning population (based off of previous population estimates). Marking continued until the target number was reached or spent females began appearing in the fyke nets. Walleye were recaptured using an AC boat electrofishing survey within one week (typically 1-4 days) after netting and marking were completed. In each lake, the entire shoreline was sampled. All captured walleyes were measured and examined for marks. Based on electrofishing mark-recapture data, population estimates were calculated using the Chapman (1951) modification of the Petersen Estimator as:
N=((M+1)(C+1))/((R+1))
where N was the population estimate, M was the number of fish marked and released, C was the total number of fish captured and examined for marks in the recapture sample, and R was the total number of marked fish observed in C. The Chapman Modification method was used because it provides more accurate population estimates in cases when R is relatively small (Ricker 1975).

From early-May to mid-June, we sampled larval fishes using a 1,000m mesh conical ichthyoplankton net towed for five minutes immediately below the lake surface. Weekly samples were taken at night at five sampling locations in each lake. Each lake was divided into five quadrats and sites were established at a randomly selected nearshore (&lt;100 m of shore) location in each quadrat on each sampling date. Once selected, locations remained fixed throughout the study. Volume of water filtered during each tow was estimated using a General Oceanics© model 2030R flowmeter mounted in the center of the net frame. Samples were transferred to containers and stored in 90% ethanol. Collected fishes were identified to species according to Auer (1982) and enumerated.
In addition to the adult walleye population, we were interested in estimating the size of the adult largemouth bass population. We performed early summer (late-May) mark-recapture surveys using AC boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle with two netters) to sample largemouth bass. Collected largemouth bass were measured, checked for a top caudal fin clip, and if not present, marked with a top caudal fin clip and released. Adult (mature) largemouth bass were defined as all fish 203 mm. We aimed to recapture 10% of the marked population. Largemouth bass are in very low abundance in Sandy Beach Lake therefore a population estimate was not possible. In McDermott Lake, due to the small population size of largemouth bass we completed multiple marking surveys from late-May to early June to achieve this recapture rate. From electrofishing mark-recapture information, population estimates were calculated using the Schnabel (1938) modification of the Lincoln-Petersen method:
where N was the population estimate, M was the number of fish marked and released in sample t, C was the number of fish captured in sample t, and R was the number of fish already marked when caught in sample t.
To obtain centrarchid population demographic data, current standardized WDNR surveys of inland lakes consist of early summer (water temperature range = 13.0–21.0°C) AC boat electrofishing surveys or mid‐summer (18.3–26.7°C) mini‐fyke net (Simonson et al. 2008). To encompass this range of water temperatures, we performed a combination of surveys starting at the end of May with an AC boat electrofishing survey. Then, fish were sampled once monthly when lake surface water temperatures were ≥13.0°C in both lakes (June–September). Both lakes were sampled during 1‐week each month using three gears (AC boat electrofishing, mini-fyke nets, cloverleaf traps). Lakes were sampled on consecutive nights in each 1‐week period but only one gear type was employed per night.
All gears sampled shallow shorelines (0–5 m from bank, depth ≤2 m) and were deployed in fixed locations following standard approaches (Bonar et al. 2009). Sampling locations were evenly distributed along the shoreline of the lake, and all gears were deployed in similar habitat types. Five 10‐min nighttime boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle) transects were conducted using two dipnetters. Five mini‐fyke nets (0.9‐m × 0.61‐m frames, 3.2‐mm mesh [bar measure], 7.6‐m‐long lead, and a double throat) were deployed in areas where the net frames would be in 1.0–1.5 m of water, and leads were fixed onshore. Five cloverleaf traps (three lobed, height = 41 cm, 50 cm diameter, 6.0‐mm bar wire mesh with 12.7‐mm‐wide openings between lobes, and an attractant [liver]) were deployed in littoral habitats. Both mini‐fyke nets and cloverleaf traps were set in early afternoon, fished overnight, and retrieved the following afternoon (~24‐h soak time). All catches were standardized according to gear-specific effort. For boat electrofishing, catch per unit effort (CPUE) is presented as fish/hr. For mini-fyke nets and cloverleaf traps, CPUE is calculated as fish/net night or fish/trap night.
To quantify walleye recruitment in each lake, we employed multiple gears throughout the sampling season including micromesh gillnets, beach seines, and boat electrofishing. In late July/early August, we deployed four 46-m x 1.2-m gillnets with 0.95-cm bar mesh. Sampling locations were evenly distributed along the shoreline and locations were fixed each year. Gillnets were set at night and at depths ranging from 0-5 m. Set duration ranged 1-2 hours to minimize bycatch, thus catches were standardized to age-0 walleyes collected per 10 hours of soak time. In late August, we pulled .24-m long beach seines with 0.64-cm mesh at five sites in each lake. Sites were chosen to represent a variety of habitat types and based on ability to effectively use the seine. Seining sites remained fixed for the duration of the study. Seines were used during daylight hours on each lake. Catch per unit effort was calculated as the number of individuals per seine haul. When water temperatures fell below 21°C (early September), we sampled age-0 walleyes using nighttime boat electrofishing (Wisconsin‐style; AC; 2.0–3.0 amps, 200–350 V, 25% duty cycle, two netters). The entire shoreline of each lake was sampled. Surveys were conducted prior to walleye fingerling stocking. All collected walleye were measured (TL, mm). Catch per unit effort was calculated as the number of age-0 walleyes per meter shoreline.
Removal efforts
In addition to standardized surveys in our experimental lake, in 2018 we began centrarchid removal efforts using a variety of techniques including fyke nets, boat electrofishing, mini-fyke nets, and cloverleaf traps (Fig. 1). Following annual spring fyke net surveys, fyke nets remained in the experimental lake to remove centrarchids. In 2018, we sampled 10 fyke nets from May 14 to June 7 when centrarchid catches started to decline. Due to personnel limitations, in 2019 and 2020 only five fyke nets were used from late spring (May 9, April 30) until late June (June 27, June 25). Additionally, we sampled five mini-fyke nets and 21 cloverleaf traps from late May through mid-August. All gears were emptied every 1-2 days and sites were rotated to maximize centrarchid catches. Collected fish were identified to species and measured (TL, mm). Centrarchid species were retained while other species were returned to McDermott Lake.
NTL Themes
Version Number
1

North Temperate Lakes LTER: Trout Lake Spiny Water Flea 2014 - present

Abstract
Beginning in 2014, 30 meter vertical tows with a special zooplankton net were collected in Trout Lake specifically for the invasive Bythotrephes longimanus (spiny water flea). The net has a 400 micrometer mesh with a 0.5 meter diameter opening. Individuals are simply counted, and density is determined to be the number of individuals divided by the total water volume of each tow.
Additional Information
Related data set: North Temperate Lakes LTER: Zooplankton - Trout Lake Area 1992 - current (37)
Core Areas
Dataset ID
389
Date Range
-
Maintenance
on-going
Methods
Two 30-meter vertical tows (0.5m diameter, 400um mesh net) are collected at the deepest part of Trout Lake each time the lake is visited for routine LTER sampling during open water. On occasion, tows are collected on additional dates. Samples are visually scanned in their entirety for number of Bythotrephes present. The samples are not preserved or archived.

Publication Date
Version Number
2

Long-term fish abundance data for Wisconsin Lakes Department of Natural Resources and North Temperate Lakes LTER 1944 - 2012

Abstract
This dataset describes long-term (1944-2012) variations in the relative abundance of fish populations representing nine species in Wisconsin lakes. Data were collected by Wisconsin Department of Natural Resource fisheries biologists as part of routine lake fisheries assessments. Individual survey methodologies varied over space and time and are described in more detail by Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Contact
Core Areas
Creator
Dataset ID
356
Date Range
-
Maintenance
completed
Methods
Fisheries surveys of inland lakes and streams in Wisconsin have been conducted by the Wisconsin Department of Natural Resources (WDNR) professionals and its predecessor the Wisconsin Conservation Department for >70 y. Standard fyke net and boat electrofishing surveys tend to dominate the fisheries surveys and data collected. Most fyke net data on certain species (e.g., Walleye Sander vitreus and Muskellunge Esox masquinongy) originates from annual spring netting surveys following ice-out. These data are used for abundance estimates, mark and recapture surveys for estimating population sizes, and egg-take procedures for the hatcheries. Boat-mounted boom and mini-boom electrofishing surveys became increasingly common in the late 1950s and 1960s. Boat electrofishing surveys have typically been conducted during early summer months (May and June), but some electrofishing survey data are also collected in early spring as part of walleye and muskellunge mark-recapture surveys. Summer fyke netting surveys have been collected more sporadically over time, but were once more commonly used as a panfish survey methodology. Surveys were largely non-standardized. Thus, future users and statistical comparisons utilizing these data should acknowledge the non-standard nature of their collection. More in-depth description of these data can be found in Rypel, A. et al., 2016. Seventy-Year Retrospective on Size-Structure Changes in the Recreational Fisheries of Wisconsin. Fisheries, 41, pp.230-243. Available at: http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1160894
Version Number
5

Microbial Observatory at North Temperate Lakes LTER Time series of bacterial community dynamics in Lake Mendota 2000 - 2009

Abstract
With an unprecedented decade-long time series from a temperate eutrophic lake, we analyzed bacterial and environmental co-occurrence networks to gain insight into seasonal dynamics at the community level. We found that (1) bacterial co-occurrence networks were non-random, (2) season explained the network complexity and (3) co-occurrence network complexity was negatively correlated with the underlying community diversity across different seasons. Network complexity was not related to the variance of associated environmental factors. Temperature and productivity may drive changes in diversity across seasons in temperate aquatic systems, much as they control diversity across latitude. While the implications of bacterioplankton network structure on ecosystem function are still largely unknown, network analysis, in conjunction with traditional multivariate techniques, continues to increase our understanding of bacterioplankton temporal dynamics.
Core Areas
Dataset ID
298
Date Range
Maintenance
completed
Metadata Provider
Methods
Surface water samples were collected from Lake Mendota, WI, USA, and analyzed by automated ribosomal intergenic spacer analysis as described previously (Shade et al., 2007). From 2000 to 2009, a total of 34 spring, 53 summer and 34 autumn observations were made. Thirty-two environmental variables were collected at the same location by the North Temperate Lakes Long Term Ecological Research program (lter.limnology.wisc.edu)
Short Name
MEMOTY
Version Number
18

LTREB Kalfastrond Peninsula Experiment (KAL) Midge Counts at Lake Myvatn 2008-2011

Abstract
A cross ecosystem resource blocking experiment was conducted on the Kalfastrond peninsula, known as the KAL experiment or KAL midge blocking experiment, at Lake Myvatn to determine the influence of an aquatic resource on a terrestrial food web over time. A manipulative field experiment was used in conjunction with a stable isotope analysis to examine changes in terrestrial arthropod food webs in response to the midge subsidy. Cages were established at 2 by 2 meter plots in 6 blocks spread across the site. Each block included 3 treatment levels, an open control plot, a full exclusion cage and a partial exclusion cage, for a total of 18 experimental plots. Midge exclusion cages were designed to prevent midges from entering plots with such cages. Control open pit midge cages were set as a control which allowed complete access to all arthropods. Partial midge exclusion cages were designed and used to examine any effects of cages themselves on terrestrial responses while minimally affecting midge inputs into the plots and arthropod movement. All cages were set at the middle to end of May to the beginning of August in each year, the period corresponding to the active growing season of plants and the flight activity of midges at this site. Midge activity was measured in all plots to document changes in midge abundance over the course of a season and between years and to assess the degree to which cages excluded midges.Midge abundance in the plots was continuously measured using passive aerial infall traps. Midges from infall traps were counted and identified to morphospecies, where the small species is Tanytarsus gracilentus and the large species is Chironomus islandicus. Some arthropods were only identified to the family level Simuliidae, and other arthropods were lumped in a category named others. If the infall trap contained hundreds to thousands of a particular midge species a subsample for each species was performed to estimate the number of midges trapped. These data are the results of the midge counts from the infall traps.
Contact
Core Areas
Dataset ID
284
Date Range
-
Maintenance
Ongoing
Metadata Provider
Methods
I. Field MethodsThe site where this manipulative field experiment was conducted on the Kalfastrond peninsula at Lake Myvatn is approximately 150 meters long and 75 meters wide. The vegetation consists of grasses Deschampsia spp., Poa spp., and Agrostis spp.), sedges (Carex spp.), and forbs (Ranunculus acris, Geum rivale,and Potentilla palustris). The experimental midge exclusions occurred from the middle or end of May to the beginning of August in each year, the period corresponding to the active growing season of plants and the flight activity of midges at this site. 2 by 2 meter plots were established in 6 blocks spread across the site. Each block included 3 treatment levels, an open control plot, a full exclusion cage and a partial exclusion cage, for a total of 18 experimental plots. Control plots were open to allow complete access to all arthropods. Experimental midge exclusion cages were 1 meter high and constructed from white PVC tubing affixed to rebar posts on each corner of the plot, Plate 1. Full exclusion cages were entirely covered with white polyester netting, 200 holes per square inch, Barre Army Navy Store, Barre VT, USA, to prevent midges from entering the plot. The mesh netting completely enclosed the 2 by 2 by 1 meter frame to prevent flying insects from entering, however the mesh was not secured to the ground in order to allow non flying,ground crawling, arthropods to freely enter and exit the cages. Partial exclusion cages had one 0.5 meter strip of mesh stretched around the outside of the frame and another 0.75 meter strip draped over the top. Partial cages were designed to examine any effects of cages themselves on terrestrial responses while minimally affecting midge inputs into the plots and arthropod movement.The partial exclusion treatment was discontinued in 2011. Each plot contains a pitfall and an infall trap that are continuously sampled during the summer, while the cages are up. Vacuum samples were taken from the plots about once per month in 2008 through 2010 and only once per summer for subsequent summers.Midge activity was measured in all plots to document changes in midge abundance over the course of a season and between years and to assess the degree to which cages excluded midges. Midge abundance in the plots was continuously measured using passive aerial infall traps consisting of a 1000 milliliter clear plastic cup, 95 square centimeter opening, attached to a post 0.5 meters high and filled with 250 milliliters of a 1 to 1 ethylene glycol to water solution and a small amount of unscented detergent to capture and kill insects that alighted upon the surface. Infall traps were emptied about every 10 days.II. AnalysisMidges were counted and identified to morphospecies, small and large. The midge (Diptera,Chrionomidae) assemblage at Myvatn is dominated by two species,Chironomus islandicus (Kieffer)(large, 1.1 mg dw) and Tanytarsus gracilentus(Holmgren)(small, 0.1 mg dw), together comprising 90 percent of total midge abundance (Lindegaard and Jonasson 1979). First, the midges collected in the infall traps were spread out in trays, and counted if there were only a few. Some midges were only identified to the family level of Simuliidae,and other arthropods were counted and categorized as the group, others. Arthropods only identified to the family level Simuliidae or classified as others were not dually counted as Chironomus islandicus or Tanytarsus gracilentus. If there were many midges, generally if there were hundreds to thousands, in an infall trap,subsamples were taken. Subsampling was done using plastic rings that were dropped into the tray. The rings were relatively small compared to the tray, about 2 percent of the area of a tray was represented in a ring. The area inside a ring and the total area of the trays were also measured. Note that different sized rings and trays were used in subsample analysis. These are as follows, Trays, small (area of 731 square centimeters), large1 (area of 1862.40 square centimeters), and large2 (area of 1247 square centimeters). Rings, standard ring (diameter of 7.30 centimeters, subsample area is 41.85 square centimeters) and small ring (diameter of 6.5 centimeters, subsample area is 33.18 square centimeters). A small ring was only used to subsample trays classified as type large2.The fraction subsampled was then calculated depending on the size of the tray and ring used for the subsample analysis. If the entire tray was counted and no subsampling was done then the fraction subsampled was assigned a value of 1.0. If subsampling was done the fraction subsampled was calculated as the number of subsamples taken multiplied by the fraction of the tray that a subsample ring area covers (number of subsamples multiplied by (ring area divided by tray area)). Note that this is dependent on the tray and ring used for subsample analysis. Finally, the number of midges in an infall trap accounting for subsampling was calculated as the raw count of midges divided by the fraction subsampled (raw count divided by fraction subsampled).Other metrics such as total insects in meters squared per day, and total insect biomass in grams per meter squared day can be calculated with these data. in addition to the estimated average individual midge masses in grams, For 2008 through 2010 average midge masses were calculated as, Tanytarsus equal to .0001104 grams, Chironomus equal to .0010837 grams. For 2011 average midge masses were, Tanytarsus equal to .000182 grams, Chironomus equal to .001268 grams.
Version Number
15

WDNR Yahara Lakes Fisheries: Fish Lengths and Weights 1987-1998

Abstract
These data were collected by the Wisconsin Department of Natural Resources (WDNR) from 1987-1998. Most of these data (1987-1993) precede 1995, the year that the University of Wisconsin NTL-LTER program took over sampling of the Yahara Lakes. However, WDNR data collected from 1997-1998 (unrelated to LTER sampling) is also included. In 1987 a joint project by the WDNR and the University of Wisconsin-Madison, Center for Limnology (CFL) was initiated on Lake Mendota. The project involved biomanipulation of fish communities within the lake, which was acheived by stocking game fish species (northern pike and walleye). The goal was to induce a trophic cascade that would improve the water clarity of Lake Mendota. See Lathrop et al. 2002. Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. Freshwater Biology 47, 2410-2424. In collecting these data, the objective was to gather population data and monitor populations to track the progress of the biomanipulation. The data is dominated by an assesssment of the game fishery in Lake Mendota, however other Yahara Lakes and non-game fish species are also represented. A combination of gear types was used to gather the population data including boom shocking, fyke netting, mini-fyke netting, seining, and gill netting. Not every sampling year includes length and weight data from all gear types. The WDNR also carried out randomized, access-point creel surveys to estimate fishing pressure, catch rates, harvest, and exploitation rates. Five data files each include length-weight data, and are organized by the type of gear or method which was used to collect the data: 1) fyke, mini-fyke, and seine netting 2) boom shocking 3) gill netting (1993 only) 4)walleye age as determined by scale and spine analysis (1987 only), and 5) creel survey. The final data file contains creel survey information: number of anglers fishing the shoreline, and number of anglers that started and completed trips from public and private access points.
Core Areas
Dataset ID
279
Date Range
-
Metadata Provider
Methods
BOOM SHOCKING1987:A standard WDNR electrofishing boat was used on Lake Mendota set at 300 volts and 2.5 amps (mean) DC, with a 20 % duty cycle and 60 pulses per second. On all sampling dates two people netted fish, the total electrofishing crew was three people. Shocking was divided into stations. For each station, the actual starting and ending time was recorded. Starting and ending points of each station were plotted on a nap. A 7.5 minute topographic map (published 1983) and a cartometer was used to develop a standardized shoreline mileage numbering scheme. Starting at the Yahara River outlet at Tenney Park and measuring counterclockwise, the shoreline was numbered according to the number of miles from the outlet. The length of shoreline shocked for each station was determined using the same maps. The objectives of the fall 1987 electrofishing was: to gather CPE data for comparison with previous surveys of the lake; develop a database for relating fall electroshocker CPE to predator density; collect fall predator diet data; make mark-recapture population estimates of YOY predators; and determine year-class-strength of some nonpredators (yellow perch, yellow bass, and white bass).1993: Electrofishing was used to continue marking largemouth and smallmouth bass (because of low CPE in fyke nets), to recapture fish marked in fyke netting, and to mark and recapture walleyes ( less than 11.0 in.) on Lake Mendota. Four person crews electrofished after sunset from May 05 to June 03, 1993. A standard WDNR electrofishing boat was used, set at about 300 volts and 15.0 amps (mean) DC, with a 20 % duty cycle at 60 pulses per second. On all sampling dates two people netted fish; thus, CPE data are given as catch per two netter hour or mile. Shocking was divided into stations. For each station the actual starting and ending time and the generator s meter times was recorded. Starting and ending points of each station were plotted on a map. 7.5 minute topographic maps (published in 1983) were used in addition to a cartometer to develop a standardized shoreline mileage numbering scheme. Starting at the Yahara River outlet at Tenney Park and measuring counterclockwise the shoreline was numbered according to the number of miles from the outlet. The length of shoreline shocked for each station was determined using these maps. The 4 person electroshocker crews were used again from September 20 to October 19. Fall shocking had several objectives: to gather CPE data for comparison with previous surveys of the lake; develop a database for relating fall electroshocker CPE to piscivore density; and make mark recapture population estimates of young of year (YOY) piscivores.1997:5/13/1997-5/20/1997: Electrofishing was completed at night on lakes: Mendota, Monona, and Waubesa. A standard WDNR electrofishing boat was used, set from 320-420 volts and 16-22 amps DC, with a 20 % duty cycle at 50 pulses per second. Two netters were used for each shocking event. At a particular station, starting and ending times where shocking took place were recorded. The location of the designated shocking stations is unknown.9/23/1997-10/14/1997: Electrofishing was completed at night on Mendota, Monona, Waubesa, and Wingra. A standard WDNR electrofishing boat was used, set from 315-400 volts and 16-24 amps DC, with a 20% duty cycle at 60 pulses per second. Two netters were used for each shocking event. Starting and ending time at each shocking station was listed. The location of the designated shocking stations is unknown.1998:Electrofishing was completed at night on Mendota, Monona, Wingra, and Waubesa from 5/12/1998- 10/28/1998. A standard WDNR electrofishing boat was used, set from 240-410 volts and 15-22 amps DC, with a 20% duty cycle at 50-100 pulses per second. Two netters were used for each shocking event. Starting and ending time at each shocking station was listed. The location of the designated shocking stations is unknown. FYKE NETTING1987:Fyke nets were fished daily from March 17 to April 24, 1987 on Lake Mendota. The nets were constructed of 1.25 inch (stretch) mesh with a lead length of 50 ft. (a few 25 ft. leads were used). The hoop diameter was 3 ft. and the frame measured 3 ft. by 6 ft. Total length of the net was 28 ft. plus the lead length. Nets were set in 48 unknown locations. Initially, effort was concentrated around traditional northern pike spawning sites (Cherokee Marsh, Sixmile Creek, Pheasant Branch Creek, and University Bay). As northern pike catch-per-effort (CPE) declined some nets were moved onto rocky shorelines of the lake to capture walleyes. All adult predators (northern pike, hybrid muskie, largemouth and smallmouth bass, walleye, gar, bowfin, and channel catfish) captured were tagged and scale sampled. Measurements on non-predator species captured in fyke nets were made one day per week. This sampling was used to index size structure and abundance, and to collect age and growth data. In each net, total length and weight of 20 fish of each species caught was measured, and the remaining caught were counted.1993:Same methods as 1987, except fyke nets were fished from 4/8/1993-4/29/1993 on Lake Mendota. The 1993 fyke net data also specifies the &ldquo;mile&rdquo; at which the fyke net was set. This is defined as the number of miles from the outlet of the Yahara River at Tenney Park, moving counterclockwise around the lake. In addition, abundance and lengths of non-gamefish species captured in fyke nets were recorded one day per week. Six nets were randomly selected to sample for non-gamefish data. This sampling was used to index size structure and abundance, and to collect age and growth data. In each randomly selected net, total length and weight was measured for 20 fish of each species, and the remaining caught were counted.1998:There is no formal documentation for the exact methods used for fyke netting from 3/3/1998-8/12/1998 on Lake Mendota. However, given that the data is similar to data collected in 1987 and 1993 it is speculated that the same methods were used.MINI-FYKE NETTING1989:There is no formal documentation for the exact methods used for mini-fyke netting on Lake Mendota and Lake Monona from 7/26/1989-8/25/1989. However, given that the data is similar to data collected from 1990-1993 it is speculated that the same methods were used. In the sampling year of 1989, mini-fyke nets were placed at 22 different unknown stations.1990-1993: Mini-fyke nets were fished on Lake Mendota and Lake Monona during July-September at 20, 29, 13, and 15 sites per month during 1990, 1991, 1992, and 1993, respectively to estimate year-class strength, relative abundance, and size structure of fishes in the littoral zone. Nets were constructed with 3/16 in. mesh, 2 ft. diameter hoops, 2 ft. x 3 ft. frame, and a 25 ft. lead. Sites were comparable to seine sites used in previous surveys. Sites included a variety of substrate types and macrophyte densities. To exclude turtles and large piscivores from minifyke nets, some nets were constructed with approximately 2 in. by 2 in. mesh at the entrance to the net. Thus, mini-fyke net data are most accurate for YOY fishes, and should not be used to make inferences about fishes larger than the exclusion mesh size. 1997:There is no formal documentation for the mini-fyke methods which were used on Lake Waubesa and Lake Wingra from 9/16/1997-9/18/1997. However, given that the data is similar to data collected in 1989, and 1990-1993, it is speculated that the methods used during 1997 are the same. SEINE NETTING1989, 1993: Monthly shoreline seining surveys were conducted on Lake Mendota and Lake Monona during June through September to estimate year class-strength, relative abundance, and size structure of the littoral zone fish community. Twenty sites were identified based on previous studies. Sites included a variety of substrate types and macrophyte densities. Seine hauls were made with a 25ft bag seine with 1/8 inch mesh pulled perpendicular to shore starting from a depth of 1 m. Twenty fish of each species were measured from each haul and any additional fish were counted. Gill Netting (1993)Experimental gill nets were fished in weekly periods during June through August, 1993. Gill nets were used to capture piscivores for population estimates of fish marked in fyke nets. All nets were constructed of five 2.5-4.5 in. mesh panels, and were 125 ft. long. Nets set in water shallower than 10 ft. were 3ft. high or less; all others were 6ft. high or less. Sampling locations were selected randomly from up to three strata: 1) offshore reef sets, 2) inshore sets, 6.0-9.9 ft. deep, and 3) mid-depth sets, 10-29.9 ft. deep. The exact location at which the gill nets were set on the lake is unknown because the latitude and longitude values which were recorded by the WDNR are invalid. Temperature and dissolved oxygen profiles were used to monitor the development of the thermocline and guide net placement during July and August. After the thermocline was established nets were set out to the 30 ft. contour or to the maximum depth with dissolved oxygen greater than 2 ppm. Walleye Age: Scale and Spine Analysis (1987) Scales were taken from walleye that were shocked during the fall of 1987 electrofishing events on Lake Mendota. Scales were taken from 10 fish per one-inch length increment. The scales were removed from behind the left pectoral fin, and from the nape on the left side on esocids. In addition, the second dorsal spine was removed from 10 walleyes per sex and inch increment (to age and compare with scale ages for fish over 20 inches). CREEL SURVEYS1989:Fishing pressure, catch rates, harvest, and exploitation rates were estimated from a randomized, access-point creel survey. The schedule was stratified into weekday and weekend/holiday day types. Shifts were selected randomly and were either 07:00-15:00 h or 15:00-23:00 h. In addition, two 23:00-03:00 h shifts and two 03:00-07:00 h shifts were sampled per month to estimate the same parameters during night time hours. During the ice fishing season (January-February) 22 access points around Lake Mendota and upstream to the Highway 113 bridge were sampled. The clerk counted the number of anglers starting and completing trips during the scheduled stop at each access point. During openwater (March-December) 13 access points were sampled; 10 were boat ramps and 3 were popular shore fishing sites<strong>. </strong>At each of these sites, an instantaneous count of shore anglers was made upon arrival at the site, continuous counts of anglers starting and completing trips at public and private access points were made. Boat occupants and ice fishing anglers were only interviewed if they were completing a trip. Both complete and incomplete interviews were made of shore anglers. Number caught and number kept of each species, and percent of time seeking a particular species were recorded. All predators possessed by anglers were measured, weighed, and inspected for finclips and tags. We measured a random sample of at least 20 fish of each non-predator species per day.1990-1993: Same as 1989, except 23 access points were used during the ice fishing season. In addition, 13 access points were sampled during the openwater (May-December) season; 9 sites were boat ramps and 4 sites were popular shore fishing sites. 1994-1999: No formal documentation exists, but given the similarity in the data and consistency through the years; it is speculated tha tthe methods are the same.
Version Number
19

North Temperate Lakes LTER: Sparkling Lake Littoral Fish 2009 - 2010

Abstract
Sparkling Lake littoral fish caught from 2009-2010. Sampling included length, weight, scales, and diet.
Core Areas
Dataset ID
270
Date Range
-
LTER Keywords
Maintenance
completed
Metadata Provider
Methods
We sampled the Sparkling Lake littoral fish community bimonthly during summer months using electrofishing, angling, and fyke nets were from 2009-2010. All fish were measured (total length, mm), weighed (g), and tagged with Floy tags or fin clips. Diets were collected from each species at each electrofishing sampling event using gastric lavage and preserved in 95% EtOH. Scales were also collected from some fish.
Version Number
25

Landscape Postition Project: Benthic Invertebrates

Invertebrate Collection
We used modified Hester-Dendy colonization substrates to sample benthic invertebrate communities. Each sampling device consisted of a 3"x3" top plate, alternating layers of course and fine mesh, a 'choreboy' commercial scrubbing puff, alternating layers of coarse (6.35 mm) and fine (3.18 mm) black plastic mesh, and a 3"x3" bottom plate (see NTL-LTER website for further description). Two Hester-Dendy samplers were set at a depth of one meter on each of three substrate types (cobble, sand and silt) within each lake for four weeks.
Subscribe to abundance