US Long-Term Ecological Research Network
Spatial and temporal patterns in the hydrogeochemistry of a poor fen in northern Wisconsin
Year of Publication
1990
DOI
10.1007/BF00000852
Volume
11
Number of Pages
63-76
We studied the factors causing spatial and temporal patterning of interstitial water chemistry in Crystal Bog, a 7 ha northern Wisconsin kettle-hole peatland. Over the course of the snow-free season Crystal Bog exhibited spatial and temporal patterns in chemistry, especially hydrogen-ion, dissolved organic carbon, and specific conductance. The peatland contains a 0.5 ha pond that has water more dilute than the interstitial water of the surrounding peatland. The direction of groundwater flow between the lake and the peatland was seasonally dependent. In the spring and early summer, flow was from the lake into the peatland, especially on the eastern side of the lake. This flow resulted in a plume of relatively dilute surface interstitial water in the peatland. In mid and late summer direction of groundwater flow was from the peatland into the lake and the dilute plume was reduced in areal extent. By fall the direction of water flow was again from the lake to the peatland. The spatial and temporal heterogeneity in water chemistry produced by the seasonal variation in the direction of horizontal water flow was substantial. Minimum and maximum observed concentrations of dissolved organic carbon (DOC) in the interstitial water of the peatland, for example, differed by more than a factor of three, and pH ranged between 3.8 and 5.0. Correlations of DOC with anion deficit and hydrogen ion concentration and experiments of photo-oxidation of water samples showed that organic acids were the primary cause of acidity in the peatland. Specific conductance was highly correlated with DOC, probably because of DOC’s correlation with the very conductive hydrogen ion. In Crystal Bog it was possible to use the relatively simple measure of specific conductance to estimate the temporal and spatial distribution of the more difficult to determine DOC.