US Long-Term Ecological Research Network
Phosphorus and nitrogen limitation of algal biomass across trophic gradients
Year of Publication
Number of Pages
Regression results based on data from 46 northern temperate lakes show that total phosphorus (TP) is the best predictor for phytoplankton (as chl-a) at lower trophic levels, TP \textless 200 mg · m-3. A regression including both TP and TN as regressors is the best predictor for lakes with TP \textgreater 200 mg · m-3. However, the good correlation is probably due to a high correlation between lake average chl-a (all years observed) and lake average TP and TN. Within single hypereutrophic lakes, TN alone is the best predictor. It was not possible to identify a medium trophic domain where TN and TP in combination was the best predictor for chl-a. The ratio TN:TP in the water decreases from about 40 to about 5 with increasing trophic level. Optimum TN:TP ratio for algal species with high abundance during late summer and autumn reflects this decreasing ratio, but within a lesser range, i.e., 20 to 5. In contrast, TN:TP ratios for species abundant during the early vernal period showed no, or an inverse, relation to the TN:TP ratio of the water.